
Guile-Cairo
version 1.11.2, updated 19 November 2020

Carl Worth
Andy Wingo
(many others)

i

Short Contents

1 cairo t . 1

2 Paths . 15

3 Patterns . 23
4 Transformations . 30
5 Regions . 33
6 Text . 36
7 Font Faces . 43

8 Scaled Fonts . 44
9 Font Options . 50

10 FreeType Fonts . 52
11 Win32 Fonts . 53

12 Quartz Fonts . 54
13 User Fonts . 55
14 cairo device t . 56

15 cairo surface t . 59
16 Image Surfaces . 65
17 PDF Surfaces . 67
18 PNG Support . 69

19 PostScript Surfaces . 70

20 Recording Surfaces . 74

21 SVG Surfaces . 76

22 cairo matrix t . 77
23 Error handling . 79

24 Version Information . 80
25 Types . 82
Concept Index . 83
Function Index . 84

1

1 cairo t

The cairo drawing context

1.1 Overview

<cairo> is the main object used when drawing with cairo. To draw with cairo, you
create a <cairo>, set the target surface, and drawing options for the <cairo>, create
shapes with functions like cairo-move-to and cairo-line-to, and then draw shapes with
cairo-stroke or cairo-fill.

<cairo>’s can be pushed to a stack via cairo-save. They may then safely be changed,
without loosing the current state. Use cairo-restore to restore to the saved state.

1.2 Usage

[Function]cairo-create (target <cairo-surface-t>) ⇒ (ret <cairo-t>)
Creates a new <cairo-t> with all graphics state parameters set to default values
and with target as a target surface. The target surface should be constructed with
a backend-specific function such as cairo-image-surface-create (or any other
‘cairo_<backend>_surface_create’ variant).

target target surface for the context

ret a newly allocated <cairo-t>.

[Function]cairo-save (cr <cairo-t>)
Makes a copy of the current state of cr and saves it on an internal stack of saved states
for cr. When cairo-restore is called, cr will be restored to the saved state. Multiple
calls to cairo-save and cairo-restore can be nested; each call to cairo-restore

restores the state from the matching paired cairo-save.

It isn’t necessary to clear all saved states before a <cairo-t> is freed. If the reference
count of a <cairo-t> drops to zero in response to a call to cairo-destroy, any saved
states will be freed along with the <cairo-t>.

cr a <cairo-t>

[Function]cairo-restore (cr <cairo-t>)
Restores cr to the state saved by a preceding call to cairo-save and removes that
state from the stack of saved states.

cr a <cairo-t>

[Function]cairo-get-target (cr <cairo-t>) ⇒ (ret <cairo-surface-t >)
Gets the target surface for the cairo context as passed to cairo-create.

This function will always return a valid pointer, but the result can be a "nil" surface
if cr is already in an error state, (ie. cairo-status‘!=’‘CAIRO_STATUS_SUCCESS’). A
nil surface is indicated by cairo-surface-status‘!=’‘CAIRO_STATUS_SUCCESS’.

cr a cairo context

ret the target surface. This object is owned by cairo. To keep a reference to
it, you must call cairo-surface-reference.

Chapter 1: cairo t 2

[Function]cairo-push-group (cr <cairo-t>)
Temporarily redirects drawing to an intermediate surface known as a group. The redi-
rection lasts until the group is completed by a call to cairo-pop-group or cairo-pop-
group-to-source. These calls provide the result of any drawing to the group as a
pattern, (either as an explicit object, or set as the source pattern).

This group functionality can be convenient for performing intermediate compositing.
One common use of a group is to render objects as opaque within the group, (so
that they occlude each other), and then blend the result with translucence onto the
destination.

Groups can be nested arbitrarily deep by making balanced calls to cairo-push-

group/cairo-pop-group. Each call pushes/pops the new target group onto/from a
stack.

The cairo-push-group function calls cairo-save so that any changes to the
graphics state will not be visible outside the group, (the pop group functions call
cairo-restore).

By default the intermediate group will have a content type of ‘CAIRO_CONTENT_COLOR_ALPHA’.
Other content types can be chosen for the group by using cairo-push-group-with-

content instead.

As an example, here is how one might fill and stroke a path with translucence, but
without any portion of the fill being visible under the stroke:

cairo_push_group (cr);

cairo_set_source (cr, fill_pattern);

cairo_fill_preserve (cr);

cairo_set_source (cr, stroke_pattern);

cairo_stroke (cr);

cairo_pop_group_to_source (cr);

cairo_paint_with_alpha (cr, alpha);

cr a cairo context

Since 1.2

[Function]cairo-pop-group (cr <cairo-t>) ⇒ (ret <cairo-pattern-t >)
Terminates the redirection begun by a call to cairo-push-group or cairo-push-

group-with-content and returns a new pattern containing the results of all drawing
operations performed to the group.

The cairo-pop-group function calls cairo-restore, (balancing a call to cairo-save
by the push group function), so that any changes to the graphics state will not be
visible outside the group.

cr a cairo context

ret a newly created (surface) pattern containing the results of all drawing
operations performed to the group. The caller owns the returned object
and should call cairo-pattern-destroy when finished with it.

Since 1.2

Chapter 1: cairo t 3

[Function]cairo-pop-group-to-source (cr <cairo-t>)
Terminates the redirection begun by a call to cairo-push-group or cairo-push-

group-with-content and installs the resulting pattern as the source pattern in the
given cairo context.

The behavior of this function is equivalent to the sequence of operations:

cairo_pattern_t *group = cairo_pop_group (cr);

cairo_set_source (cr, group);

cairo_pattern_destroy (group);

but is more convenient as their is no need for a variable to store the short-lived pointer
to the pattern.

The cairo-pop-group function calls cairo-restore, (balancing a call to cairo-save
by the push group function), so that any changes to the graphics state will not be
visible outside the group.

cr a cairo context

Since 1.2

[Function]cairo-get-group-target (cr <cairo-t>)
⇒ (ret <cairo-surface-t >)

Gets the current destination surface for the context. This is either the original target
surface as passed to cairo-create or the target surface for the current group as
started by the most recent call to cairo-push-group or cairo-push-group-with-
content.

This function will always return a valid pointer, but the result can be a "nil" surface
if cr is already in an error state, (ie. cairo-status‘!=’‘CAIRO_STATUS_SUCCESS’). A
nil surface is indicated by cairo-surface-status‘!=’‘CAIRO_STATUS_SUCCESS’.

cr a cairo context

ret the target surface. This object is owned by cairo. To keep a reference to
it, you must call cairo-surface-reference.

Since 1.2

[Function]cairo-set-source-rgb (cr <cairo-t>) (red <double>)
(green <double>) (blue <double>)

Sets the source pattern within cr to an opaque color. This opaque color will then be
used for any subsequent drawing operation until a new source pattern is set.

The color components are floating point numbers in the range 0 to 1. If the values
passed in are outside that range, they will be clamped.

The default source pattern is opaque black, (that is, it is equivalent to
cairo set source rgb(cr, 0.0, 0.0, 0.0)).

cr a cairo context

red red component of color

green green component of color

blue blue component of color

Chapter 1: cairo t 4

[Function]cairo-set-source-rgba (cr <cairo-t>) (red <double>)
(green <double>) (blue <double>) (alpha <double>)

Sets the source pattern within cr to a translucent color. This color will then be used
for any subsequent drawing operation until a new source pattern is set.

The color and alpha components are floating point numbers in the range 0 to 1. If
the values passed in are outside that range, they will be clamped.

The default source pattern is opaque black, (that is, it is equivalent to
cairo set source rgba(cr, 0.0, 0.0, 0.0, 1.0)).

cr a cairo context

red red component of color

green green component of color

blue blue component of color

alpha alpha component of color

[Function]cairo-set-source (cr <cairo-t>) (source <cairo-pattern-t>)
Sets the source pattern within cr to source. This pattern will then be used for any
subsequent drawing operation until a new source pattern is set.

Note: The pattern’s transformation matrix will be locked to the user space in effect at
the time of cairo-set-source. This means that further modifications of the current
transformation matrix will not affect the source pattern. See cairo-pattern-set-

matrix.

The default source pattern is a solid pattern that is opaque black, (that is, it is
equivalent to cairo set source rgb(cr, 0.0, 0.0, 0.0)).

cr a cairo context

source a <cairo-pattern-t> to be used as the source for subsequent drawing
operations.

[Function]cairo-set-source-surface (cr <cairo-t>)
(surface <cairo-surface-t>) (x <double>) (y <double>)

This is a convenience function for creating a pattern from surface and setting it as
the source in cr with cairo-set-source.

The x and y parameters give the user-space coordinate at which the surface origin
should appear. (The surface origin is its upper-left corner before any transformation
has been applied.) The x and y parameters are negated and then set as translation
values in the pattern matrix.

Other than the initial translation pattern matrix, as described above, all other
pattern attributes, (such as its extend mode), are set to the default values as in
cairo-pattern-create-for-surface. The resulting pattern can be queried with
cairo-get-source so that these attributes can be modified if desired, (eg. to create
a repeating pattern with cairo-pattern-set-extend).

cr a cairo context

surface a surface to be used to set the source pattern

Chapter 1: cairo t 5

x User-space X coordinate for surface origin

y User-space Y coordinate for surface origin

[Function]cairo-get-source (cr <cairo-t>) ⇒ (ret <cairo-pattern-t >)
Gets the current source pattern for cr.

cr a cairo context

ret the current source pattern. This object is owned by cairo. To keep a
reference to it, you must call cairo-pattern-reference.

[Function]cairo-set-antialias (cr <cairo-t>)
(antialias <cairo-antialias-t>)

Set the antialiasing mode of the rasterizer used for drawing shapes. This value is
a hint, and a particular backend may or may not support a particular value. At
the current time, no backend supports ‘CAIRO_ANTIALIAS_SUBPIXEL’ when drawing
shapes.

Note that this option does not affect text rendering, instead see cairo-font-

options-set-antialias.

cr a <cairo-t>

antialias the new antialiasing mode

[Function]cairo-get-antialias (cr <cairo-t>)
⇒ (ret <cairo-antialias-t>)

Gets the current shape antialiasing mode, as set by cairo-set-shape-antialias.

cr a cairo context

ret the current shape antialiasing mode.

[Function]cairo-set-dash (cr <cairo-t>) ⇒ (dashes <double>)
(num-dashes <int>) (offset <double>)

Sets the dash pattern to be used by cairo-stroke. A dash pattern is specified by
dashes, an array of positive values. Each value provides the length of alternate "on"
and "off" portions of the stroke. The offset specifies an offset into the pattern at
which the stroke begins.

Each "on" segment will have caps applied as if the segment were a separate sub-path.
In particular, it is valid to use an "on" length of 0.0 with ‘CAIRO_LINE_CAP_ROUND’
or ‘CAIRO_LINE_CAP_SQUARE’ in order to distributed dots or squares along a path.

Note: The length values are in user-space units as evaluated at the time of stroking.
This is not necessarily the same as the user space at the time of cairo-set-dash.

If num-dashes is 0 dashing is disabled.

If num-dashes is 1 a symmetric pattern is assumed with alternating on and off portions
of the size specified by the single value in dashes.

If any value in dashes is negative, or if all values are 0, then cr will be put into an
error state with a status of ‘CAIRO_STATUS_INVALID_DASH’.

cr a cairo context

Chapter 1: cairo t 6

dashes an array specifying alternate lengths of on and off stroke portions

num-dashes
the length of the dashes array

offset an offset into the dash pattern at which the stroke should start

[Function]cairo-get-dash-count (cr <cairo-t>) ⇒ (ret <int>)
This function returns the length of the dash array in cr (0 if dashing is not currently
in effect).

See also cairo-set-dash and cairo-get-dash.

cr a <cairo-t>

ret the length of the dash array, or 0 if no dash array set.

Since 1.4

[Function]cairo-set-fill-rule (cr <cairo-t>)
(fill-rule <cairo-fill-rule-t>)

Set the current fill rule within the cairo context. The fill rule is used to determine
which regions are inside or outside a complex (potentially self-intersecting) path. The
current fill rule affects both cairo-fill and cairo-clip. See <cairo-fill-rule-t>
for details on the semantics of each available fill rule.

The default fill rule is ‘CAIRO_FILL_RULE_WINDING’.

cr a <cairo-t>

fill-rule a fill rule, specified as a <cairo-fill-rule-t>

[Function]cairo-get-fill-rule (cr <cairo-t>)
⇒ (ret <cairo-fill-rule-t>)

Gets the current fill rule, as set by cairo-set-fill-rule.

cr a cairo context

ret the current fill rule.

[Function]cairo-set-line-cap (cr <cairo-t>)
(line-cap <cairo-line-cap-t>)

Sets the current line cap style within the cairo context. See <cairo-line-cap-t> for
details about how the available line cap styles are drawn.

As with the other stroke parameters, the current line cap style is examined by
cairo-stroke, cairo-stroke-extents, and cairo-stroke-to-path, but does not
have any effect during path construction.

The default line cap style is ‘CAIRO_LINE_CAP_BUTT’.

cr a cairo context

line-cap a line cap style

[Function]cairo-get-line-cap (cr <cairo-t>) ⇒ (ret <cairo-line-cap-t>)
Gets the current line cap style, as set by cairo-set-line-cap.

cr a cairo context

ret the current line cap style.

Chapter 1: cairo t 7

[Function]cairo-set-line-join (cr <cairo-t>)
(line-join <cairo-line-join-t>)

Sets the current line join style within the cairo context. See <cairo-line-join-t>

for details about how the available line join styles are drawn.

As with the other stroke parameters, the current line join style is examined by
cairo-stroke, cairo-stroke-extents, and cairo-stroke-to-path, but does not
have any effect during path construction.

The default line join style is ‘CAIRO_LINE_JOIN_MITER’.

cr a cairo context

line-join a line join style

[Function]cairo-get-line-join (cr <cairo-t>)
⇒ (ret <cairo-line-join-t>)

Gets the current line join style, as set by cairo-set-line-join.

cr a cairo context

ret the current line join style.

[Function]cairo-set-line-width (cr <cairo-t>) (width <double>)
Sets the current line width within the cairo context. The line width value specifies
the diameter of a pen that is circular in user space, (though device-space pen may be
an ellipse in general due to scaling/shear/rotation of the CTM).

Note: When the description above refers to user space and CTM it refers to the user
space and CTM in effect at the time of the stroking operation, not the user space
and CTM in effect at the time of the call to cairo-set-line-width. The simplest
usage makes both of these spaces identical. That is, if there is no change to the CTM
between a call to cairo-set-line-width and the stroking operation, then one can
just pass user-space values to cairo-set-line-width and ignore this note.

As with the other stroke parameters, the current line width is examined by
cairo-stroke, cairo-stroke-extents, and cairo-stroke-to-path, but does not
have any effect during path construction.

The default line width value is 2.0.

cr a <cairo-t>

width a line width

[Function]cairo-get-line-width (cr <cairo-t>) ⇒ (ret <double>)
This function returns the current line width value exactly as set by cairo-set-line-

width. Note that the value is unchanged even if the CTM has changed between the
calls to cairo-set-line-width and cairo-get-line-width.

cr a cairo context

ret the current line width.

[Function]cairo-set-miter-limit (cr <cairo-t>) (limit <double>)
Sets the current miter limit within the cairo context.

Chapter 1: cairo t 8

If the current line join style is set to ‘CAIRO_LINE_JOIN_MITER’ (see cairo-set-line-
join), the miter limit is used to determine whether the lines should be joined with a
bevel instead of a miter. Cairo divides the length of the miter by the line width. If
the result is greater than the miter limit, the style is converted to a bevel.

As with the other stroke parameters, the current line miter limit is examined by
cairo-stroke, cairo-stroke-extents, and cairo-stroke-to-path, but does not
have any effect during path construction.

The default miter limit value is 10.0, which will convert joins with interior angles
less than 11 degrees to bevels instead of miters. For reference, a miter limit of 2.0
makes the miter cutoff at 60 degrees, and a miter limit of 1.414 makes the cutoff at
90 degrees.

A miter limit for a desired angle can be computed as: miter limit = 1/sin(angle/2)

cr a cairo context

limit miter limit to set

[Function]cairo-get-miter-limit (cr <cairo-t>) ⇒ (ret <double>)
Gets the current miter limit, as set by cairo-set-miter-limit.

cr a cairo context

ret the current miter limit.

[Function]cairo-set-operator (cr <cairo-t>) (op <cairo-operator-t>)
Sets the compositing operator to be used for all drawing operations. See
<cairo-operator-t> for details on the semantics of each available compositing
operator.

The default operator is ‘CAIRO_OPERATOR_OVER’.

cr a <cairo-t>

op a compositing operator, specified as a <cairo-operator-t>

[Function]cairo-get-operator (cr <cairo-t>) ⇒ (ret <cairo-operator-t>)
Gets the current compositing operator for a cairo context.

cr a cairo context

ret the current compositing operator.

[Function]cairo-set-tolerance (cr <cairo-t>) (tolerance <double>)
Sets the tolerance used when converting paths into trapezoids. Curved segments of the
path will be subdivided until the maximum deviation between the original path and
the polygonal approximation is less than tolerance. The default value is 0.1. A larger
value will give better performance, a smaller value, better appearance. (Reducing the
value from the default value of 0.1 is unlikely to improve appearance significantly.)
The accuracy of paths within Cairo is limited by the precision of its internal arith-
metic, and the prescribed tolerance is restricted to the smallest representable internal
value.

cr a <cairo-t>

tolerance the tolerance, in device units (typically pixels)

Chapter 1: cairo t 9

[Function]cairo-get-tolerance (cr <cairo-t>) ⇒ (ret <double>)
Gets the current tolerance value, as set by cairo-set-tolerance.

cr a cairo context

ret the current tolerance value.

[Function]cairo-clip (cr <cairo-t>)
Establishes a new clip region by intersecting the current clip region with the current
path as it would be filled by cairo-fill and according to the current fill rule (see
cairo-set-fill-rule).

After cairo-clip, the current path will be cleared from the cairo context.

The current clip region affects all drawing operations by effectively masking out any
changes to the surface that are outside the current clip region.

Calling cairo-clip can only make the clip region smaller, never larger. But the
current clip is part of the graphics state, so a temporary restriction of the clip region
can be achieved by calling cairo-clip within a cairo-save/cairo-restore pair.
The only other means of increasing the size of the clip region is cairo-reset-clip.

cr a cairo context

[Function]cairo-clip-preserve (cr <cairo-t>)
Establishes a new clip region by intersecting the current clip region with the current
path as it would be filled by cairo-fill and according to the current fill rule (see
cairo-set-fill-rule).

Unlike cairo-clip, cairo-clip-preserve preserves the path within the cairo con-
text.

The current clip region affects all drawing operations by effectively masking out any
changes to the surface that are outside the current clip region.

Calling cairo-clip-preserve can only make the clip region smaller, never larger.
But the current clip is part of the graphics state, so a temporary restriction
of the clip region can be achieved by calling cairo-clip-preserve within a
cairo-save/cairo-restore pair. The only other means of increasing the size of the
clip region is cairo-reset-clip.

cr a cairo context

[Function]cairo-clip-extents (cr <cairo-t>) ⇒ (x1 <double>)
(y1 <double>) (x2 <double>) (y2 <double>)

Computes a bounding box in user coordinates covering the area inside the current
clip.

cr a cairo context

x1 left of the resulting extents

y1 top of the resulting extents

x2 right of the resulting extents

y2 bottom of the resulting extents

Since 1.4

Chapter 1: cairo t 10

[Function]cairo-in-clip (cr <cairo-t>) (x <double>) (y <double>)
⇒ (ret <cairo-bool-t>)

Tests whether the given point is inside the area that would be visible through the
current clip, i.e. the area that would be filled by a cairo-paint operation.

See cairo-clip, and cairo-clip-preserve.

cr a cairo context

x X coordinate of the point to test

y Y coordinate of the point to test

ret A non-zero value if the point is inside, or zero if outside.

Since 1.10

[Function]cairo-reset-clip (cr <cairo-t>)
Reset the current clip region to its original, unrestricted state. That is, set the clip
region to an infinitely large shape containing the target surface. Equivalently, if
infinity is too hard to grasp, one can imagine the clip region being reset to the exact
bounds of the target surface.

Note that code meant to be reusable should not call cairo-reset-clip as it will
cause results unexpected by higher-level code which calls cairo-clip. Consider us-
ing cairo-save and cairo-restore around cairo-clip as a more robust means of
temporarily restricting the clip region.

cr a cairo context

[Function]cairo-copy-clip-rectangle-list (cr <cairo-t>)
⇒ (ret <cairo-rectangle-list-t >)

Gets the current clip region as a list of rectangles in user coordinates. Never returns
‘#f’.

The status in the list may be ‘CAIRO_STATUS_CLIP_NOT_REPRESENTABLE’ to indicate
that the clip region cannot be represented as a list of user-space rectangles. The
status may have other values to indicate other errors.

cr a cairo context

ret the current clip region as a list of rectangles in user coordinates, which
should be destroyed using cairo-rectangle-list-destroy.

Since 1.4

[Function]cairo-fill (cr <cairo-t>)
A drawing operator that fills the current path according to the current fill rule, (each
sub-path is implicitly closed before being filled). After cairo-fill, the current path
will be cleared from the cairo context. See cairo-set-fill-rule and cairo-fill-

preserve.

cr a cairo context

Chapter 1: cairo t 11

[Function]cairo-fill-preserve (cr <cairo-t>)
A drawing operator that fills the current path according to the current fill rule, (each
sub-path is implicitly closed before being filled). Unlike cairo-fill, cairo-fill-
preserve preserves the path within the cairo context.

See cairo-set-fill-rule and cairo-fill.

cr a cairo context

[Function]cairo-fill-extents (cr <cairo-t>) ⇒ (x1 <double>)
(y1 <double>) (x2 <double>) (y2 <double>)

Computes a bounding box in user coordinates covering the area that would be af-
fected, (the "inked" area), by a cairo-fill operation given the current path and fill
parameters. If the current path is empty, returns an empty rectangle ((0,0), (0,0)).
Surface dimensions and clipping are not taken into account.

Contrast with cairo-path-extents, which is similar, but returns non-zero extents
for some paths with no inked area, (such as a simple line segment).

Note that cairo-fill-extentsmust necessarily do more work to compute the precise
inked areas in light of the fill rule, so cairo-path-extents may be more desirable
for sake of performance if the non-inked path extents are desired.

See cairo-fill, cairo-set-fill-rule and cairo-fill-preserve.

cr a cairo context

x1 left of the resulting extents

y1 top of the resulting extents

x2 right of the resulting extents

y2 bottom of the resulting extents

[Function]cairo-in-fill (cr <cairo-t>) (x <double>) (y <double>)
⇒ (ret <cairo-bool-t>)

Tests whether the given point is inside the area that would be affected by a
cairo-fill operation given the current path and filling parameters. Surface
dimensions and clipping are not taken into account.

See cairo-fill, cairo-set-fill-rule and cairo-fill-preserve.

cr a cairo context

x X coordinate of the point to test

y Y coordinate of the point to test

ret A non-zero value if the point is inside, or zero if outside.

[Function]cairo-mask (cr <cairo-t>) (pattern <cairo-pattern-t>)
A drawing operator that paints the current source using the alpha channel of pattern
as a mask. (Opaque areas of pattern are painted with the source, transparent areas
are not painted.)

cr a cairo context

pattern a <cairo-pattern-t>

Chapter 1: cairo t 12

[Function]cairo-mask-surface (cr <cairo-t>) (surface <cairo-surface-t>)
(surface-x <double>) (surface-y <double>)

A drawing operator that paints the current source using the alpha channel of surface
as a mask. (Opaque areas of surface are painted with the source, transparent areas
are not painted.)

cr a cairo context

surface a <cairo-surface-t>

surface-x X coordinate at which to place the origin of surface

surface-y Y coordinate at which to place the origin of surface

[Function]cairo-paint (cr <cairo-t>)
A drawing operator that paints the current source everywhere within the current clip
region.

cr a cairo context

[Function]cairo-paint-with-alpha (cr <cairo-t>) (alpha <double>)
A drawing operator that paints the current source everywhere within the current
clip region using a mask of constant alpha value alpha. The effect is similar to
cairo-paint, but the drawing is faded out using the alpha value.

cr a cairo context

alpha alpha value, between 0 (transparent) and 1 (opaque)

[Function]cairo-stroke (cr <cairo-t>)
A drawing operator that strokes the current path according to the current line width,
line join, line cap, and dash settings. After cairo-stroke, the current path will be
cleared from the cairo context. See cairo-set-line-width, cairo-set-line-join,
cairo-set-line-cap, cairo-set-dash, and cairo-stroke-preserve.

Note: Degenerate segments and sub-paths are treated specially and provide a useful
result. These can result in two different situations:

1. Zero-length "on" segments set in cairo-set-dash. If the cap style is
‘CAIRO_LINE_CAP_ROUND’ or ‘CAIRO_LINE_CAP_SQUARE’ then these segments
will be drawn as circular dots or squares respectively. In the case of
‘CAIRO_LINE_CAP_SQUARE’, the orientation of the squares is determined by the
direction of the underlying path.

2. A sub-path created by cairo-move-to followed by either a cairo-close-path

or one or more calls to cairo-line-to to the same coordinate as the cairo-move-

to. If the cap style is ‘CAIRO_LINE_CAP_ROUND’ then these sub-paths will be drawn
as circular dots. Note that in the case of ‘CAIRO_LINE_CAP_SQUARE’ a degenerate
sub-path will not be drawn at all, (since the correct orientation is indeterminate).

In no case will a cap style of ‘CAIRO_LINE_CAP_BUTT’ cause anything to be drawn in
the case of either degenerate segments or sub-paths.

cr a cairo context

Chapter 1: cairo t 13

[Function]cairo-stroke-preserve (cr <cairo-t>)
A drawing operator that strokes the current path according to the current line width,
line join, line cap, and dash settings. Unlike cairo-stroke, cairo-stroke-preserve
preserves the path within the cairo context.

See cairo-set-line-width, cairo-set-line-join, cairo-set-line-cap,
cairo-set-dash, and cairo-stroke-preserve.

cr a cairo context

[Function]cairo-stroke-extents (cr <cairo-t>) ⇒ (x1 <double>)
(y1 <double>) (x2 <double>) (y2 <double>)

Computes a bounding box in user coordinates covering the area that would be affected,
(the "inked" area), by a cairo-stroke operation given the current path and stroke
parameters. If the current path is empty, returns an empty rectangle ((0,0), (0,0)).
Surface dimensions and clipping are not taken into account.

Note that if the line width is set to exactly zero, then cairo-stroke-extents will
return an empty rectangle. Contrast with cairo-path-extents which can be used
to compute the non-empty bounds as the line width approaches zero.

Note that cairo-stroke-extents must necessarily do more work to compute the
precise inked areas in light of the stroke parameters, so cairo-path-extents may be
more desirable for sake of performance if non-inked path extents are desired.

See cairo-stroke, cairo-set-line-width, cairo-set-line-join, cairo-set-

line-cap, cairo-set-dash, and cairo-stroke-preserve.

cr a cairo context

x1 left of the resulting extents

y1 top of the resulting extents

x2 right of the resulting extents

y2 bottom of the resulting extents

[Function]cairo-in-stroke (cr <cairo-t>) (x <double>) (y <double>)
⇒ (ret <cairo-bool-t>)

Tests whether the given point is inside the area that would be affected by a
cairo-stroke operation given the current path and stroking parameters. Surface
dimensions and clipping are not taken into account.

See cairo-stroke, cairo-set-line-width, cairo-set-line-join, cairo-set-

line-cap, cairo-set-dash, and cairo-stroke-preserve.

cr a cairo context

x X coordinate of the point to test

y Y coordinate of the point to test

ret A non-zero value if the point is inside, or zero if outside.

14

[Function]cairo-copy-page (cr <cairo-t>)
Emits the current page for backends that support multiple pages, but doesn’t clear
it, so, the contents of the current page will be retained for the next page too. Use
cairo-show-page if you want to get an empty page after the emission.

This is a convenience function that simply calls cairo-surface-copy-page on cr’s
target.

cr a cairo context

[Function]cairo-show-page (cr <cairo-t>)
Emits and clears the current page for backends that support multiple pages. Use
cairo-copy-page if you don’t want to clear the page.

This is a convenience function that simply calls cairo-surface-show-page on cr’s
target.

cr a cairo context

15

2 Paths

Creating paths and manipulating path data

2.1 Overview

Paths are the most basic drawing tools and are primarily used to implicitly generate simple
masks.

2.2 Usage

[Function]cairo-copy-path (cr <cairo-t>) ⇒ (ret <cairo-path-t >)
Creates a copy of the current path and returns it to the user as a <cairo-path-

t>. See <cairo-path-data-t> for hints on how to iterate over the returned data
structure.

This function will always return a valid pointer, but the result will have no data
(‘data==‘#f’’ and ‘num_data==0’), if either of the following conditions hold:

1. If there is insufficient memory to copy the path. In this case ‘path->status’ will
be set to ‘CAIRO_STATUS_NO_MEMORY’.

2. If cr is already in an error state. In this case ‘path->status’ will contain the
same status that would be returned by cairo-status.

cr a cairo context

ret the copy of the current path. The caller owns the returned object and
should call cairo-path-destroy when finished with it.

[Function]cairo-copy-path-flat (cr <cairo-t>) ⇒ (ret <cairo-path-t >)
Gets a flattened copy of the current path and returns it to the user as a <cairo-path-
t>. See <cairo-path-data-t> for hints on how to iterate over the returned data
structure.

This function is like cairo-copy-path except that any curves in the path will
be approximated with piecewise-linear approximations, (accurate to within the
current tolerance value). That is, the result is guaranteed to not have any elements
of type ‘CAIRO_PATH_CURVE_TO’ which will instead be replaced by a series of
‘CAIRO_PATH_LINE_TO’ elements.

This function will always return a valid pointer, but the result will have no data
(‘data==‘#f’’ and ‘num_data==0’), if either of the following conditions hold:

1. If there is insufficient memory to copy the path. In this case ‘path->status’ will
be set to ‘CAIRO_STATUS_NO_MEMORY’.

2. If cr is already in an error state. In this case ‘path->status’ will contain the
same status that would be returned by cairo-status.

cr a cairo context

ret the copy of the current path. The caller owns the returned object and
should call cairo-path-destroy when finished with it.

Chapter 2: Paths 16

[Function]cairo-append-path (cr <cairo-t>) (path <cairo-path-t>)
Append the path onto the current path. The pathmay be either the return value from
one of cairo-copy-path or cairo-copy-path-flat or it may be constructed manu-
ally. See <cairo-path-t> for details on how the path data structure should be initial-
ized, and note that ‘path->status’ must be initialized to ‘CAIRO_STATUS_SUCCESS’.

cr a cairo context

path path to be appended

[Function]cairo-has-current-point (cr <cairo-t>)
⇒ (ret <cairo-bool-t>)

Returns whether a current point is defined on the current path. See cairo-get-

current-point for details on the current point.

cr a cairo context

ret whether a current point is defined.

Since 1.6

[Function]cairo-get-current-point (cr <cairo-t>) ⇒ (x <double>)
(y <double>)

Gets the current point of the current path, which is conceptually the final point
reached by the path so far.

The current point is returned in the user-space coordinate system. If there is no
defined current point or if cr is in an error status, x and y will both be set to 0.0. It
is possible to check this in advance with cairo-has-current-point.

Most path construction functions alter the current point. See the following for details
on how they affect the current point: cairo-new-path, cairo-new-sub-path,
cairo-append-path, cairo-close-path, cairo-move-to, cairo-line-to,
cairo-curve-to, cairo-rel-move-to, cairo-rel-line-to, cairo-rel-curve-to,
cairo-arc, cairo-arc-negative, cairo-rectangle, cairo-text-path,
cairo-glyph-path, cairo-stroke-to-path.

Some functions use and alter the current point but do not otherwise change current
path: cairo-show-text.

Some functions unset the current path and as a result, current point: cairo-fill,
cairo-stroke.

cr a cairo context

x return value for X coordinate of the current point

y return value for Y coordinate of the current point

[Function]cairo-new-path (cr <cairo-t>)
Clears the current path. After this call there will be no path and no current point.

cr a cairo context

Chapter 2: Paths 17

[Function]cairo-new-sub-path (cr <cairo-t>)
Begin a new sub-path. Note that the existing path is not affected. After this call
there will be no current point.

In many cases, this call is not needed since new sub-paths are frequently started with
cairo-move-to.

A call to cairo-new-sub-path is particularly useful when beginning a new sub-path
with one of the cairo-arc calls. This makes things easier as it is no longer necessary
to manually compute the arc’s initial coordinates for a call to cairo-move-to.

cr a cairo context

Since 1.2

[Function]cairo-close-path (cr <cairo-t>)
Adds a line segment to the path from the current point to the beginning of the current
sub-path, (the most recent point passed to cairo-move-to), and closes this sub-path.
After this call the current point will be at the joined endpoint of the sub-path.

The behavior of cairo-close-path is distinct from simply calling cairo-line-to

with the equivalent coordinate in the case of stroking. When a closed sub-path is
stroked, there are no caps on the ends of the sub-path. Instead, there is a line join
connecting the final and initial segments of the sub-path.

If there is no current point before the call to cairo-close-path, this function will
have no effect.

Note: As of cairo version 1.2.4 any call to cairo-close-path will place an explicit
MOVE TO element into the path immediately after the CLOSE PATH element,
(which can be seen in cairo-copy-path for example). This can simplify path process-
ing in some cases as it may not be necessary to save the "last move to point" during
processing as the MOVE TO immediately after the CLOSE PATH will provide that
point.

cr a cairo context

[Function]cairo-arc (cr <cairo-t>) (xc <double>) (yc <double>)
(radius <double>) (angle1 <double>) (angle2 <double>)

Adds a circular arc of the given radius to the current path. The arc is centered at
(xc, yc), begins at angle1 and proceeds in the direction of increasing angles to end
at angle2. If angle2 is less than angle1 it will be progressively increased by 2*M PI
until it is greater than angle1.

If there is a current point, an initial line segment will be added to the path to connect
the current point to the beginning of the arc. If this initial line is undesired, it can
be avoided by calling cairo-new-sub-path before calling cairo-arc.

Angles are measured in radians. An angle of 0.0 is in the direction of the positive X
axis (in user space). An angle of ‘M_PI’/2.0 radians (90 degrees) is in the direction of
the positive Y axis (in user space). Angles increase in the direction from the positive
X axis toward the positive Y axis. So with the default transformation matrix, angles
increase in a clockwise direction.

(To convert from degrees to radians, use ‘degrees * (M_PI / 180.)’.)

Chapter 2: Paths 18

This function gives the arc in the direction of increasing angles; see cairo-arc-

negative to get the arc in the direction of decreasing angles.

The arc is circular in user space. To achieve an elliptical arc, you can scale the current
transformation matrix by different amounts in the X and Y directions. For example,
to draw an ellipse in the box given by x, y, width, height:

cairo_save (cr);

cairo_translate (cr, x + width / 2., y + height / 2.);

cairo_scale (cr, width / 2., height / 2.);

cairo_arc (cr, 0., 0., 1., 0., 2 * M_PI);

cairo_restore (cr);

cr a cairo context

xc X position of the center of the arc

yc Y position of the center of the arc

radius the radius of the arc

angle1 the start angle, in radians

angle2 the end angle, in radians

[Function]cairo-arc-negative (cr <cairo-t>) (xc <double>) (yc <double>)
(radius <double>) (angle1 <double>) (angle2 <double>)

Adds a circular arc of the given radius to the current path. The arc is centered at
(xc, yc), begins at angle1 and proceeds in the direction of decreasing angles to end at
angle2. If angle2 is greater than angle1 it will be progressively decreased by 2*M PI
until it is less than angle1.

See cairo-arc for more details. This function differs only in the direction of the arc
between the two angles.

cr a cairo context

xc X position of the center of the arc

yc Y position of the center of the arc

radius the radius of the arc

angle1 the start angle, in radians

angle2 the end angle, in radians

[Function]cairo-curve-to (cr <cairo-t>) (x1 <double>) (y1 <double>)
(x2 <double>) (y2 <double>) (x3 <double>) (y3 <double>)

Adds a cubic Bzier spline to the path from the current point to position (x3, y3) in
user-space coordinates, using (x1, y1) and (x2, y2) as the control points. After this
call the current point will be (x3, y3).

If there is no current point before the call to cairo-curve-to this function will behave
as if preceded by a call to cairo move to(cr, x1, y1).

cr a cairo context

Chapter 2: Paths 19

x1 the X coordinate of the first control point

y1 the Y coordinate of the first control point

x2 the X coordinate of the second control point

y2 the Y coordinate of the second control point

x3 the X coordinate of the end of the curve

y3 the Y coordinate of the end of the curve

[Function]cairo-line-to (cr <cairo-t>) (x <double>) (y <double>)
Adds a line to the path from the current point to position (x, y) in user-space coor-
dinates. After this call the current point will be (x, y).

If there is no current point before the call to cairo-line-to this function will behave
as cairo move to(cr, x, y).

cr a cairo context

x the X coordinate of the end of the new line

y the Y coordinate of the end of the new line

[Function]cairo-move-to (cr <cairo-t>) (x <double>) (y <double>)
Begin a new sub-path. After this call the current point will be (x, y).

cr a cairo context

x the X coordinate of the new position

y the Y coordinate of the new position

[Function]cairo-rectangle (cr <cairo-t>) (x <double>) (y <double>)
(width <double>) (height <double>)

Adds a closed sub-path rectangle of the given size to the current path at position (x,
y) in user-space coordinates.

This function is logically equivalent to:

cairo_move_to (cr, x, y);

cairo_rel_line_to (cr, width, 0);

cairo_rel_line_to (cr, 0, height);

cairo_rel_line_to (cr, -width, 0);

cairo_close_path (cr);

cr a cairo context

x the X coordinate of the top left corner of the rectangle

y the Y coordinate to the top left corner of the rectangle

width the width of the rectangle

height the height of the rectangle

Chapter 2: Paths 20

[Function]cairo-glyph-path (cr <cairo-t>) (glyphs <cairo-glyph-t>)
(num-glyphs <int>)

Adds closed paths for the glyphs to the current path. The generated path if filled,
achieves an effect similar to that of cairo-show-glyphs.

cr a cairo context

glyphs array of glyphs to show

num-glyphs
number of glyphs to show

[Function]cairo-text-path (cr <cairo-t>) (utf8 <char>)
Adds closed paths for text to the current path. The generated path if filled, achieves
an effect similar to that of cairo-show-text.

Text conversion and positioning is done similar to cairo-show-text.

Like cairo-show-text, After this call the current point is moved to the origin of
where the next glyph would be placed in this same progression. That is, the current
point will be at the origin of the final glyph offset by its advance values. This allows
for chaining multiple calls to to cairo-text-path without having to set current point
in between.

Note: The cairo-text-path function call is part of what the cairo designers call the
"toy" text API. It is convenient for short demos and simple programs, but it is not
expected to be adequate for serious text-using applications. See cairo-glyph-path

for the "real" text path API in cairo.

cr a cairo context

utf8 a NUL-terminated string of text encoded in UTF-8, or ‘#f’

[Function]cairo-rel-curve-to (cr <cairo-t>) (dx1 <double>)
(dy1 <double>) (dx2 <double>) (dy2 <double>) (dx3 <double>)
(dy3 <double>)

Relative-coordinate version of cairo-curve-to. All offsets are relative to the current
point. Adds a cubic Bzier spline to the path from the current point to a point offset
from the current point by (dx3, dy3), using points offset by (dx1, dy1) and (dx2,
dy2) as the control points. After this call the current point will be offset by (dx3,
dy3).

Given a current point of (x, y), cairo rel curve to(cr, dx1, dy1, dx2, dy2, dx3, dy3) is
logically equivalent to cairo curve to(cr, x+dx1, y+dy1, x+dx2, y+dy2, x+dx3, y+dy3).

It is an error to call this function with no current point. Doing so will cause cr to
shutdown with a status of ‘CAIRO_STATUS_NO_CURRENT_POINT’.

cr a cairo context

dx1 the X offset to the first control point

dy1 the Y offset to the first control point

dx2 the X offset to the second control point

dy2 the Y offset to the second control point

Chapter 2: Paths 21

dx3 the X offset to the end of the curve

dy3 the Y offset to the end of the curve

[Function]cairo-rel-line-to (cr <cairo-t>) (dx <double>) (dy <double>)
Relative-coordinate version of cairo-line-to. Adds a line to the path from the
current point to a point that is offset from the current point by (dx, dy) in user
space. After this call the current point will be offset by (dx, dy).

Given a current point of (x, y), cairo rel line to(cr, dx, dy) is logically equivalent to
cairo line to(cr, x + dx, y + dy).

It is an error to call this function with no current point. Doing so will cause cr to
shutdown with a status of ‘CAIRO_STATUS_NO_CURRENT_POINT’.

cr a cairo context

dx the X offset to the end of the new line

dy the Y offset to the end of the new line

[Function]cairo-rel-move-to (cr <cairo-t>) (dx <double>) (dy <double>)
Begin a new sub-path. After this call the current point will offset by (x, y).

Given a current point of (x, y), cairo rel move to(cr, dx, dy) is logically equivalent
to cairo move to(cr, x + dx, y + dy).

It is an error to call this function with no current point. Doing so will cause cr to
shutdown with a status of ‘CAIRO_STATUS_NO_CURRENT_POINT’.

cr a cairo context

dx the X offset

dy the Y offset

[Function]cairo-path-extents (cr <cairo-t>) ⇒ (x1 <double>)
(y1 <double>) (x2 <double>) (y2 <double>)

Computes a bounding box in user-space coordinates covering the points on the current
path. If the current path is empty, returns an empty rectangle ((0,0), (0,0)). Stroke
parameters, fill rule, surface dimensions and clipping are not taken into account.

Contrast with cairo-fill-extents and cairo-stroke-extents which return the
extents of only the area that would be "inked" by the corresponding drawing opera-
tions.

The result of cairo-path-extents is defined as equivalent to the limit of
cairo-stroke-extents with ‘CAIRO_LINE_CAP_ROUND’ as the line width approaches
0.0, (but never reaching the empty-rectangle returned by cairo-stroke-extents

for a line width of 0.0).

Specifically, this means that zero-area sub-paths such as cairo-move-to;cairo-line-
to segments, (even degenerate cases where the coordinates to both calls are identical),
will be considered as contributing to the extents. However, a lone cairo-move-to

will not contribute to the results of cairo-path-extents.

cr a cairo context

22

x1 left of the resulting extents

y1 top of the resulting extents

x2 right of the resulting extents

y2 bottom of the resulting extents

Since 1.6

23

3 Patterns

Sources for drawing

3.1 Overview

<cairo-pattern> is the paint with which cairo draws. The primary use of patterns is as
the source for all cairo drawing operations, although they can also be used as masks, that
is, as the brush too.

A cairo pattern is created by using one of the many constructors, of the form
cairo pattern create type() or implicitly through cairo set source type() functions.

3.2 Usage

[Function]cairo-pattern-add-color-stop-rgb
(pattern <cairo-pattern-t>) (offset <double>) (red <double>)
(green <double>) (blue <double>)

Adds an opaque color stop to a gradient pattern. The offset specifies the location
along the gradient’s control vector. For example, a linear gradient’s control vector is
from (x0,y0) to (x1,y1) while a radial gradient’s control vector is from any point on
the start circle to the corresponding point on the end circle.

The color is specified in the same way as in cairo-set-source-rgb.

If two (or more) stops are specified with identical offset values, they will be sorted
according to the order in which the stops are added, (stops added earlier will compare
less than stops added later). This can be useful for reliably making sharp color
transitions instead of the typical blend.

Note: If the pattern is not a gradient pattern, (eg. a linear or radial
pattern), then the pattern will be put into an error status with a status of
‘CAIRO_STATUS_PATTERN_TYPE_MISMATCH’.

pattern a <cairo-pattern-t>

offset an offset in the range [0.0 .. 1.0]

red red component of color

green green component of color

blue blue component of color

[Function]cairo-pattern-add-color-stop-rgba
(pattern <cairo-pattern-t>) (offset <double>) (red <double>)
(green <double>) (blue <double>) (alpha <double>)

Adds a translucent color stop to a gradient pattern. The offset specifies the location
along the gradient’s control vector. For example, a linear gradient’s control vector is
from (x0,y0) to (x1,y1) while a radial gradient’s control vector is from any point on
the start circle to the corresponding point on the end circle.

The color is specified in the same way as in cairo-set-source-rgba.

Chapter 3: Patterns 24

If two (or more) stops are specified with identical offset values, they will be sorted
according to the order in which the stops are added, (stops added earlier will compare
less than stops added later). This can be useful for reliably making sharp color
transitions instead of the typical blend.

Note: If the pattern is not a gradient pattern, (eg. a linear or radial
pattern), then the pattern will be put into an error status with a status of
‘CAIRO_STATUS_PATTERN_TYPE_MISMATCH’.

pattern a <cairo-pattern-t>

offset an offset in the range [0.0 .. 1.0]

red red component of color

green green component of color

blue blue component of color

alpha alpha component of color

[Function]cairo-pattern-get-color-stop-rgba
(pattern <cairo-pattern-t>) (index <int>)
⇒ (ret <cairo-status-t>) (offset <double>) (red <double>)
(green <double>) (blue <double>) (alpha <double>)

Gets the color and offset information at the given index for a gradient pattern. Values
of index are 0 to 1 less than the number returned by cairo-pattern-get-color-

stop-count.

pattern a <cairo-pattern-t>

index index of the stop to return data for

offset return value for the offset of the stop, or ‘#f’

red return value for red component of color, or ‘#f’

green return value for green component of color, or ‘#f’

blue return value for blue component of color, or ‘#f’

alpha return value for alpha component of color, or ‘#f’

ret ‘CAIRO_STATUS_SUCCESS’, or ‘CAIRO_STATUS_INVALID_INDEX’ if index is
not valid for the given pattern. If the pattern is not a gradient pattern,
‘CAIRO_STATUS_PATTERN_TYPE_MISMATCH’ is returned.

Since 1.4

[Function]cairo-pattern-create-rgb (red <double>) (green <double>)
(blue <double>) ⇒ (ret <cairo-pattern-t >)

Creates a new <cairo-pattern-t> corresponding to an opaque color. The color
components are floating point numbers in the range 0 to 1. If the values passed in
are outside that range, they will be clamped.

red red component of the color

green green component of the color

Chapter 3: Patterns 25

blue blue component of the color

ret the newly created <cairo-pattern-t> if successful, or an error pattern
in case of no memory. The caller owns the returned object and should call
cairo-pattern-destroy when finished with it. This function will always
return a valid pointer, but if an error occurred the pattern status will be
set to an error. To inspect the status of a pattern use cairo-pattern-

status.

[Function]cairo-pattern-create-rgba (red <double>) (green <double>)
(blue <double>) (alpha <double>) ⇒ (ret <cairo-pattern-t >)

Creates a new <cairo-pattern-t> corresponding to a translucent color. The color
components are floating point numbers in the range 0 to 1. If the values passed in
are outside that range, they will be clamped.

red red component of the color

green green component of the color

blue blue component of the color

alpha alpha component of the color

ret the newly created <cairo-pattern-t> if successful, or an error pattern
in case of no memory. The caller owns the returned object and should call
cairo-pattern-destroy when finished with it. This function will always
return a valid pointer, but if an error occurred the pattern status will be
set to an error. To inspect the status of a pattern use cairo-pattern-

status.

[Function]cairo-pattern-get-rgba (pattern <cairo-pattern-t>)
⇒ (ret <cairo-status-t>) (red <double>) (green <double>)
(blue <double>) (alpha <double>)

Gets the solid color for a solid color pattern.

pattern a <cairo-pattern-t>

red return value for red component of color, or ‘#f’

green return value for green component of color, or ‘#f’

blue return value for blue component of color, or ‘#f’

alpha return value for alpha component of color, or ‘#f’

ret ‘CAIRO_STATUS_SUCCESS’, or ‘CAIRO_STATUS_PATTERN_TYPE_MISMATCH’
if the pattern is not a solid color pattern.

Since 1.4

[Function]cairo-pattern-create-for-surface
(surface <cairo-surface-t>) ⇒ (ret <cairo-pattern-t >)

Create a new <cairo-pattern-t> for the given surface.

surface the surface

Chapter 3: Patterns 26

ret the newly created <cairo-pattern-t> if successful, or an error pattern
in case of no memory. The caller owns the returned object and should call
cairo-pattern-destroy when finished with it. This function will always
return a valid pointer, but if an error occurred the pattern status will be
set to an error. To inspect the status of a pattern use cairo-pattern-

status.

[Function]cairo-pattern-get-surface (pattern <cairo-pattern-t>)
⇒ (ret <cairo-status-t>) (surface <cairo-surface-t*>)

Gets the surface of a surface pattern. The reference returned in surface is owned by
the pattern; the caller should call cairo-surface-reference if the surface is to be
retained.

pattern a <cairo-pattern-t>

surface return value for surface of pattern, or ‘#f’

ret ‘CAIRO_STATUS_SUCCESS’, or ‘CAIRO_STATUS_PATTERN_TYPE_MISMATCH’
if the pattern is not a surface pattern.

Since 1.4

[Function]cairo-pattern-create-linear (x0 <double>) (y0 <double>)
(x1 <double>) (y1 <double>) ⇒ (ret <cairo-pattern-t >)

Create a new linear gradient <cairo-pattern-t> along the line defined by (x0, y0)
and (x1, y1). Before using the gradient pattern, a number of color stops should be
defined using cairo-pattern-add-color-stop-rgb or cairo-pattern-add-color-
stop-rgba.

Note: The coordinates here are in pattern space. For a new pattern, pattern space is
identical to user space, but the relationship between the spaces can be changed with
cairo-pattern-set-matrix.

x0 x coordinate of the start point

y0 y coordinate of the start point

x1 x coordinate of the end point

y1 y coordinate of the end point

ret the newly created <cairo-pattern-t> if successful, or an error pattern
in case of no memory. The caller owns the returned object and should call
cairo-pattern-destroy when finished with it. This function will always
return a valid pointer, but if an error occurred the pattern status will be
set to an error. To inspect the status of a pattern use cairo-pattern-

status.

[Function]cairo-pattern-get-linear-points (pattern <cairo-pattern-t>)
⇒ (ret <cairo-status-t>) (x0 <double>) (y0 <double>)
(x1 <double>) (y1 <double>)

Gets the gradient endpoints for a linear gradient.

pattern a <cairo-pattern-t>

Chapter 3: Patterns 27

x0 return value for the x coordinate of the first point, or ‘#f’

y0 return value for the y coordinate of the first point, or ‘#f’

x1 return value for the x coordinate of the second point, or ‘#f’

y1 return value for the y coordinate of the second point, or ‘#f’

ret ‘CAIRO_STATUS_SUCCESS’, or ‘CAIRO_STATUS_PATTERN_TYPE_MISMATCH’
if pattern is not a linear gradient pattern.

Since 1.4

[Function]cairo-pattern-create-radial (cx0 <double>) (cy0 <double>)
(radius0 <double>) (cx1 <double>) (cy1 <double>)
(radius1 <double>) ⇒ (ret <cairo-pattern-t >)

Creates a new radial gradient <cairo-pattern-t> between the two circles defined
by (cx0, cy0, radius0) and (cx1, cy1, radius1). Before using the gradient pattern, a
number of color stops should be defined using cairo-pattern-add-color-stop-rgb

or cairo-pattern-add-color-stop-rgba.

Note: The coordinates here are in pattern space. For a new pattern, pattern space is
identical to user space, but the relationship between the spaces can be changed with
cairo-pattern-set-matrix.

cx0 x coordinate for the center of the start circle

cy0 y coordinate for the center of the start circle

radius0 radius of the start circle

cx1 x coordinate for the center of the end circle

cy1 y coordinate for the center of the end circle

radius1 radius of the end circle

ret the newly created <cairo-pattern-t> if successful, or an error pattern
in case of no memory. The caller owns the returned object and should call
cairo-pattern-destroy when finished with it. This function will always
return a valid pointer, but if an error occurred the pattern status will be
set to an error. To inspect the status of a pattern use cairo-pattern-

status.

[Function]cairo-pattern-get-radial-circles
(pattern <cairo-pattern-t>) ⇒ (ret <cairo-status-t>)
(x0 <double>) (y0 <double>) (r0 <double>) (x1 <double>)
(y1 <double>) (r1 <double>)

Gets the gradient endpoint circles for a radial gradient, each specified as a center
coordinate and a radius.

pattern a <cairo-pattern-t>

x0 return value for the x coordinate of the center of the first circle, or ‘#f’

y0 return value for the y coordinate of the center of the first circle, or ‘#f’

Chapter 3: Patterns 28

r0 return value for the radius of the first circle, or ‘#f’

x1 return value for the x coordinate of the center of the second circle, or ‘#f’

y1 return value for the y coordinate of the center of the second circle, or ‘#f’

r1 return value for the radius of the second circle, or ‘#f’

ret ‘CAIRO_STATUS_SUCCESS’, or ‘CAIRO_STATUS_PATTERN_TYPE_MISMATCH’
if pattern is not a radial gradient pattern.

Since 1.4

[Function]cairo-pattern-set-extend (pattern <cairo-pattern-t>)
(extend <cairo-extend-t>)

Sets the mode to be used for drawing outside the area of a pattern. See
<cairo-extend-t> for details on the semantics of each extend strategy.

The default extend mode is ‘CAIRO_EXTEND_NONE’ for surface patterns and
‘CAIRO_EXTEND_PAD’ for gradient patterns.

pattern a <cairo-pattern-t>

extend a <cairo-extend-t> describing how the area outside of the pattern will
be drawn

[Function]cairo-pattern-get-extend (pattern <cairo-pattern-t>)
⇒ (ret <cairo-extend-t>)

Gets the current extend mode for a pattern. See <cairo-extend-t> for details on
the semantics of each extend strategy.

pattern a <cairo-pattern-t>

ret the current extend strategy used for drawing the pattern.

[Function]cairo-pattern-set-filter (pattern <cairo-pattern-t>)
(filter <cairo-filter-t>)

Sets the filter to be used for resizing when using this pattern. See <cairo-filter-t>
for details on each filter.

* Note that you might want to control filtering even when you do not have an explicit
<cairo-pattern-t> object, (for example when using cairo-set-source-surface).
In these cases, it is convenient to use cairo-get-source to get access to the pattern
that cairo creates implicitly. For example:

cairo_set_source_surface (cr, image, x, y);

cairo_pattern_set_filter (cairo_get_source (cr), CAIRO_FILTER_NEAREST);

pattern a <cairo-pattern-t>

filter a <cairo-filter-t> describing the filter to use for resizing the pattern

[Function]cairo-pattern-get-filter (pattern <cairo-pattern-t>)
⇒ (ret <cairo-filter-t>)

Gets the current filter for a pattern. See <cairo-filter-t> for details on each filter.

pattern a <cairo-pattern-t>

ret the current filter used for resizing the pattern.

29

[Function]cairo-pattern-set-matrix (pattern <cairo-pattern-t>)
(matrix <cairo-matrix-t>)

Sets the pattern’s transformation matrix to matrix. This matrix is a transformation
from user space to pattern space.

When a pattern is first created it always has the identity matrix for its transformation
matrix, which means that pattern space is initially identical to user space.

Important: Please note that the direction of this transformation matrix is from user
space to pattern space. This means that if you imagine the flow from a pattern to
user space (and on to device space), then coordinates in that flow will be transformed
by the inverse of the pattern matrix.

For example, if you want to make a pattern appear twice as large as it does by default
the correct code to use is:

cairo_matrix_init_scale (&matrix, 0.5, 0.5);

cairo_pattern_set_matrix (pattern, &matrix);

Meanwhile, using values of 2.0 rather than 0.5 in the code above would cause the
pattern to appear at half of its default size.

Also, please note the discussion of the user-space locking semantics of cairo-set-
source.

pattern a <cairo-pattern-t>

matrix a <cairo-matrix-t>

[Function]cairo-pattern-get-matrix (pattern <cairo-pattern-t>)
(matrix <cairo-matrix-t>)

Stores the pattern’s transformation matrix into matrix.

pattern a <cairo-pattern-t>

matrix return value for the matrix

[Function]cairo-pattern-get-type (pattern <cairo-pattern-t>)
⇒ (ret <cairo-pattern-type-t>)

This function returns the type a pattern. See <cairo-pattern-type-t> for available
types.

pattern a <cairo-pattern-t>

ret The type of pattern.

Since 1.2

30

4 Transformations

Manipulating the current transformation matrix

4.1 Overview

The current transformation matrix, ctm, is a two-dimensional affine transformation that
maps all coordinates and other drawing instruments from the user space into the surface’s
canonical coordinate system, also known as the device space.

4.2 Usage

[Function]cairo-translate (cr <cairo-t>) (tx <double>) (ty <double>)
Modifies the current transformation matrix (CTM) by translating the user-space ori-
gin by (tx, ty). This offset is interpreted as a user-space coordinate according to
the CTM in place before the new call to cairo-translate. In other words, the
translation of the user-space origin takes place after any existing transformation.

cr a cairo context

tx amount to translate in the X direction

ty amount to translate in the Y direction

[Function]cairo-scale (cr <cairo-t>) (sx <double>) (sy <double>)
Modifies the current transformation matrix (CTM) by scaling the X and Y user-space
axes by sx and sy respectively. The scaling of the axes takes place after any existing
transformation of user space.

cr a cairo context

sx scale factor for the X dimension

sy scale factor for the Y dimension

[Function]cairo-rotate (cr <cairo-t>) (angle <double>)
Modifies the current transformation matrix (CTM) by rotating the user-space axes by
angle radians. The rotation of the axes takes places after any existing transformation
of user space. The rotation direction for positive angles is from the positive X axis
toward the positive Y axis.

cr a cairo context

angle angle (in radians) by which the user-space axes will be rotated

[Function]cairo-transform (cr <cairo-t>) (matrix <cairo-matrix-t>)
Modifies the current transformation matrix (CTM) by applying matrix as an addi-
tional transformation. The new transformation of user space takes place after any
existing transformation.

cr a cairo context

matrix a transformation to be applied to the user-space axes

Chapter 4: Transformations 31

[Function]cairo-set-matrix (cr <cairo-t>) (matrix <cairo-matrix-t>)
Modifies the current transformation matrix (CTM) by setting it equal to matrix.

cr a cairo context

matrix a transformation matrix from user space to device space

[Function]cairo-get-matrix (cr <cairo-t>) (matrix <cairo-matrix-t>)
Stores the current transformation matrix (CTM) into matrix.

cr a cairo context

matrix return value for the matrix

[Function]cairo-identity-matrix (cr <cairo-t>)
Resets the current transformation matrix (CTM) by setting it equal to the identity
matrix. That is, the user-space and device-space axes will be aligned and one user-
space unit will transform to one device-space unit.

cr a cairo context

[Function]cairo-user-to-device (cr <cairo-t>) ⇒ (x <double>)
(y <double>)

Transform a coordinate from user space to device space by multiplying the given point
by the current transformation matrix (CTM).

cr a cairo context

x X value of coordinate (in/out parameter)

y Y value of coordinate (in/out parameter)

[Function]cairo-user-to-device-distance (cr <cairo-t>)
⇒ (dx <double>) (dy <double>)

Transform a distance vector from user space to device space. This function is similar
to cairo-user-to-device except that the translation components of the CTM will
be ignored when transforming (dx,dy).

cr a cairo context

dx X component of a distance vector (in/out parameter)

dy Y component of a distance vector (in/out parameter)

[Function]cairo-device-to-user (cr <cairo-t>) ⇒ (x <double>)
(y <double>)

Transform a coordinate from device space to user space by multiplying the given point
by the inverse of the current transformation matrix (CTM).

cr a cairo

x X value of coordinate (in/out parameter)

y Y value of coordinate (in/out parameter)

32

[Function]cairo-device-to-user-distance (cr <cairo-t>)
⇒ (dx <double>) (dy <double>)

Transform a distance vector from device space to user space. This function is similar
to cairo-device-to-user except that the translation components of the inverse
CTM will be ignored when transforming (dx,dy).

cr a cairo context

dx X component of a distance vector (in/out parameter)

dy Y component of a distance vector (in/out parameter)

33

5 Regions

Representing a pixel-aligned area

5.1 Overview

Regions are a simple graphical data type representing an area of integer-aligned rectangles.
They are often used on raster surfaces to track areas of interest, such as change or clip
areas.

5.2 Usage

[Function]cairo-region-create ⇒ (ret <cairo-region-t >)
Allocates a new empty region object.

ret A newly allocated <cairo-region-t>. Free with cairo-region-

destroy. This function always returns a valid pointer; if memory
cannot be allocated, then a special error object is returned where all
operations on the object do nothing. You can check for this with
cairo-region-status.

Since 1.10

[Function]cairo-region-copy (original <cairo-region-t>)
⇒ (ret <cairo-region-t >)

Allocates a new region object copying the area from original.

original a <cairo-region-t>

ret A newly allocated <cairo-region-t>. Free with cairo-region-

destroy. This function always returns a valid pointer; if memory
cannot be allocated, then a special error object is returned where all
operations on the object do nothing. You can check for this with
cairo-region-status.

Since 1.10

[Function]cairo-region-get-extents (region <cairo-region-t>)
(extents <cairo-rectangle-int-t>)

Gets the bounding rectangle of region as a <cairo-rectangle-int-t>

region a <cairo-region-t>

extents rectangle into which to store the extents

Since 1.10

[Function]cairo-region-is-empty (region <cairo-region-t>)
⇒ (ret <cairo-bool-t>)

Checks whether region is empty.

region a <cairo-region-t>

ret ‘#t’ if region is empty, ‘#f’ if it isn’t.

Since 1.10

Chapter 5: Regions 34

[Function]cairo-region-contains-point (region <cairo-region-t>)
(x <int>) (y <int>) ⇒ (ret <cairo-bool-t>)

Checks whether (x, y) is contained in region.

region a <cairo-region-t>

x the x coordinate of a point

y the y coordinate of a point

ret ‘#t’ if (x, y) is contained in region, ‘#f’ if it is not.

Since 1.10

[Function]cairo-region-contains-rectangle (region <cairo-region-t>)
(rectangle <cairo-rectangle-int-t>)
⇒ (ret <cairo-region-overlap-t>)

Checks whether rectangle is inside, outside or partially contained in region

region a <cairo-region-t>

rectangle a <cairo-rectangle-int-t>

ret ‘CAIRO_REGION_OVERLAP_IN’ if rectangle is entirely inside region,
‘CAIRO_REGION_OVERLAP_OUT’ if rectangle is entirely outside region,
or ‘CAIRO_REGION_OVERLAP_PART’ if rectangle is partially inside and
partially outside region.

Since 1.10

[Function]cairo-region-translate (region <cairo-region-t>) (dx <int>)
(dy <int>)

Translates region by (dx, dy).

region a <cairo-region-t>

dx Amount to translate in the x direction

dy Amount to translate in the y direction

Since 1.10

[Function]cairo-region-intersect (dst <cairo-region-t>)
(other <cairo-region-t>) ⇒ (ret <cairo-status-t>)

Computes the intersection of dst with other and places the result in dst

dst a <cairo-region-t>

other another <cairo-region-t>

ret ‘CAIRO_STATUS_SUCCESS’ or ‘CAIRO_STATUS_NO_MEMORY’

Since 1.10

[Function]cairo-region-subtract (dst <cairo-region-t>)
(other <cairo-region-t>) ⇒ (ret <cairo-status-t>)

Subtracts other from dst and places the result in dst

dst a <cairo-region-t>

35

other another <cairo-region-t>

ret ‘CAIRO_STATUS_SUCCESS’ or ‘CAIRO_STATUS_NO_MEMORY’

Since 1.10

[Function]cairo-region-union (dst <cairo-region-t>)
(other <cairo-region-t>) ⇒ (ret <cairo-status-t>)

Computes the union of dst with other and places the result in dst

dst a <cairo-region-t>

other another <cairo-region-t>

ret ‘CAIRO_STATUS_SUCCESS’ or ‘CAIRO_STATUS_NO_MEMORY’

Since 1.10

[Function]cairo-region-xor (dst <cairo-region-t>)
(other <cairo-region-t>) ⇒ (ret <cairo-status-t>)

Computes the exclusive difference of dst with other and places the result in dst. That
is, dst will be set to contain all areas that are either in dst or in other, but not in
both.

dst a <cairo-region-t>

other another <cairo-region-t>

ret ‘CAIRO_STATUS_SUCCESS’ or ‘CAIRO_STATUS_NO_MEMORY’

Since 1.10

36

6 Text

Rendering text and glyphs

6.1 Overview

The functions with text in their name form cairo’s toy text API. The toy API takes UTF-8
encoded text and is limited in its functionality to rendering simple left-to-right text with no
advanced features. That means for example that most complex scripts like Hebrew, Arabic,
and Indic scripts are out of question. No kerning or correct positioning of diacritical marks
either. The font selection is pretty limited too and doesn’t handle the case that the selected
font does not cover the characters in the text. This set of functions are really that, a toy
text API, for testing and demonstration purposes. Any serious application should avoid
them.

The functions with glyphs in their name form cairo’s low-level text API. The low-level
API relies on the user to convert text to a set of glyph indexes and positions. This is a very
hard problem and is best handled by external libraries, like the pangocairo that is part of the
Pango text layout and rendering library. Pango is available from http://www.pango.org/
(http://www.pango.org/).

6.2 Usage

[Function]cairo-select-font-face (cr <cairo-t>) (family <char>)
(slant <cairo-font-slant-t>) (weight <cairo-font-weight-t>)

Note: The cairo-select-font-face function call is part of what the cairo designers
call the "toy" text API. It is convenient for short demos and simple programs, but it
is not expected to be adequate for serious text-using applications.

Selects a family and style of font from a simplified description as a family name, slant
and weight. Cairo provides no operation to list available family names on the system
(this is a "toy", remember), but the standard CSS2 generic family names, ("serif",
"sans-serif", "cursive", "fantasy", "monospace"), are likely to work as expected.

If family starts with the string "cairo:", or if no native font backends are compiled
in, cairo will use an internal font family. The internal font family recognizes many
modifiers in the family string, most notably, it recognizes the string "monospace".
That is, the family name "cairo:monospace" will use the monospace version of the
internal font family.

For "real" font selection, see the font-backend-specific font face create functions for
the font backend you are using. (For example, if you are using the freetype-based
cairo-ft font backend, see cairo-ft-font-face-create-for-ft-face or cairo-ft-
font-face-create-for-pattern.) The resulting font face could then be used with
cairo-scaled-font-create and cairo-set-scaled-font.

Similarly, when using the "real" font support, you can call directly into the underlying
font system, (such as fontconfig or freetype), for operations such as listing available
fonts, etc.

It is expected that most applications will need to use a more comprehensive font
handling and text layout library, (for example, pango), in conjunction with cairo.

http://www.pango.org/
http://www.pango.org/

Chapter 6: Text 37

If text is drawn without a call to cairo-select-font-face, (nor cairo-set-font-
face nor cairo-set-scaled-font), the default family is platform-specific, but is
essentially "sans-serif". Default slant is ‘CAIRO_FONT_SLANT_NORMAL’, and default
weight is ‘CAIRO_FONT_WEIGHT_NORMAL’.

This function is equivalent to a call to cairo-toy-font-face-create followed by
cairo-set-font-face.

cr a <cairo-t>

family a font family name, encoded in UTF-8

slant the slant for the font

weight the weight for the font

[Function]cairo-set-font-size (cr <cairo-t>) (size <double>)
Sets the current font matrix to a scale by a factor of size, replacing any font matrix
previously set with cairo-set-font-size or cairo-set-font-matrix. This results
in a font size of size user space units. (More precisely, this matrix will result in the
font’s em-square being a size by size square in user space.)

If text is drawn without a call to cairo-set-font-size, (nor cairo-set-font-

matrix nor cairo-set-scaled-font), the default font size is 10.0.

cr a <cairo-t>

size the new font size, in user space units

[Function]cairo-set-font-matrix (cr <cairo-t>)
(matrix <cairo-matrix-t>)

Sets the current font matrix to matrix. The font matrix gives a transformation from
the design space of the font (in this space, the em-square is 1 unit by 1 unit) to
user space. Normally, a simple scale is used (see cairo-set-font-size), but a more
complex font matrix can be used to shear the font or stretch it unequally along the
two axes

cr a <cairo-t>

matrix a <cairo-matrix-t> describing a transform to be applied to the current
font.

[Function]cairo-get-font-matrix (cr <cairo-t>)
(matrix <cairo-matrix-t>)

Stores the current font matrix into matrix. See cairo-set-font-matrix.

cr a <cairo-t>

matrix return value for the matrix

[Function]cairo-set-font-options (cr <cairo-t>)
(options <cairo-font-options-t>)

Sets a set of custom font rendering options for the <cairo-t>. Rendering options are
derived by merging these options with the options derived from underlying surface; if
the value in options has a default value (like ‘CAIRO_ANTIALIAS_DEFAULT’), then the
value from the surface is used.

cr a <cairo-t>

Chapter 6: Text 38

options font options to use

[Function]cairo-get-font-options (cr <cairo-t>)
(options <cairo-font-options-t>)

Retrieves font rendering options set via <cairo-set-font-options>. Note that the
returned options do not include any options derived from the underlying surface; they
are literally the options passed to cairo-set-font-options.

cr a <cairo-t>

options a <cairo-font-options-t> object into which to store the retrieved op-
tions. All existing values are overwritten

[Function]cairo-set-font-face (cr <cairo-t>)
(font-face <cairo-font-face-t>)

Replaces the current <cairo-font-face-t> object in the <cairo-t> with font-face.
The replaced font face in the <cairo-t> will be destroyed if there are no other refer-
ences to it.

cr a <cairo-t>

font-face a <cairo-font-face-t>, or ‘#f’ to restore to the default font

[Function]cairo-get-font-face (cr <cairo-t>)
⇒ (ret <cairo-font-face-t >)

Gets the current font face for a <cairo-t>.

cr a <cairo-t>

ret the current font face. This object is owned by cairo. To keep a ref-
erence to it, you must call cairo-font-face-reference. This func-
tion never returns ‘#f’. If memory cannot be allocated, a special "nil"
<cairo-font-face-t> object will be returned on which cairo-font-

face-status returns ‘CAIRO_STATUS_NO_MEMORY’. Using this nil object
will cause its error state to propagate to other objects it is passed to,
(for example, calling cairo-set-font-face with a nil font will trigger
an error that will shutdown the <cairo-t> object).

[Function]cairo-set-scaled-font (cr <cairo-t>)
(scaled-font <cairo-scaled-font-t>)

Replaces the current font face, font matrix, and font options in the <cairo-t> with
those of the <cairo-scaled-font-t>. Except for some translation, the current CTM
of the <cairo-t> should be the same as that of the <cairo-scaled-font-t>, which
can be accessed using cairo-scaled-font-get-ctm.

cr a <cairo-t>

scaled-font
a <cairo-scaled-font-t>

Since 1.2

Chapter 6: Text 39

[Function]cairo-get-scaled-font (cr <cairo-t>)
⇒ (ret <cairo-scaled-font-t >)

Gets the current scaled font for a <cairo-t>.

cr a <cairo-t>

ret the current scaled font. This object is owned by cairo. To keep a
reference to it, you must call cairo-scaled-font-reference. This
function never returns ‘#f’. If memory cannot be allocated, a special
"nil" <cairo-scaled-font-t> object will be returned on which
cairo-scaled-font-status returns ‘CAIRO_STATUS_NO_MEMORY’. Using
this nil object will cause its error state to propagate to other objects it
is passed to, (for example, calling cairo-set-scaled-font with a nil
font will trigger an error that will shutdown the <cairo-t> object).

Since 1.4

[Function]cairo-show-text (cr <cairo-t>) (utf8 <char>)
A drawing operator that generates the shape from a string of UTF-8 characters,
rendered according to the current font face, font size (font matrix), and font options.

This function first computes a set of glyphs for the string of text. The first glyph is
placed so that its origin is at the current point. The origin of each subsequent glyph
is offset from that of the previous glyph by the advance values of the previous glyph.

After this call the current point is moved to the origin of where the next glyph would
be placed in this same progression. That is, the current point will be at the origin of
the final glyph offset by its advance values. This allows for easy display of a single
logical string with multiple calls to cairo-show-text.

Note: The cairo-show-text function call is part of what the cairo designers call the
"toy" text API. It is convenient for short demos and simple programs, but it is not
expected to be adequate for serious text-using applications. See cairo-show-glyphs
for the "real" text display API in cairo.

cr a cairo context

utf8 a NUL-terminated string of text encoded in UTF-8, or ‘#f’

[Function]cairo-show-glyphs (cr <cairo-t>) (glyphs <cairo-glyph-t>)
(num-glyphs <int>)

A drawing operator that generates the shape from an array of glyphs, rendered ac-
cording to the current font face, font size (font matrix), and font options.

cr a cairo context

glyphs array of glyphs to show

num-glyphs
number of glyphs to show

Chapter 6: Text 40

[Function]cairo-show-text-glyphs (cr <cairo-t>) (utf8 <char>)
(utf8-len <int>) (glyphs <cairo-glyph-t>) (num-glyphs <int>)
(clusters <cairo-text-cluster-t>) (num-clusters <int>)
(cluster-flags <cairo-text-cluster-flags-t>)

This operation has rendering effects similar to cairo-show-glyphs but, if the target
surface supports it, uses the provided text and cluster mapping to embed the text
for the glyphs shown in the output. If the target does not support the extended
attributes, this function acts like the basic cairo-show-glyphs as if it had been
passed glyphs and num-glyphs.

The mapping between utf8 and glyphs is provided by an array of clusters. Each
cluster covers a number of text bytes and glyphs, and neighboring clusters cover
neighboring areas of utf8 and glyphs. The clusters should collectively cover utf8 and
glyphs in entirety.

The first cluster always covers bytes from the beginning of utf8. If cluster-flags do
not have the ‘CAIRO_TEXT_CLUSTER_FLAG_BACKWARD’ set, the first cluster also covers
the beginning of glyphs, otherwise it covers the end of the glyphs array and following
clusters move backward.

See <cairo-text-cluster-t> for constraints on valid clusters.

cr a cairo context

utf8 a string of text encoded in UTF-8

utf8-len length of utf8 in bytes, or -1 if it is NUL-terminated

glyphs array of glyphs to show

num-glyphs
number of glyphs to show

clusters array of cluster mapping information

num-clusters
number of clusters in the mapping

cluster-flags
cluster mapping flags

Since 1.8

[Function]cairo-font-extents (cr <cairo-t>)
(extents <cairo-font-extents-t>)

Gets the font extents for the currently selected font.

cr a <cairo-t>

extents a <cairo-font-extents-t> object into which the results will be stored.

[Function]cairo-text-extents (cr <cairo-t>) (utf8 <char>)
(extents <cairo-text-extents-t>)

Gets the extents for a string of text. The extents describe a user-space rectangle that
encloses the "inked" portion of the text, (as it would be drawn by cairo-show-text).

Chapter 6: Text 41

Additionally, the x advance and y advance values indicate the amount by which the
current point would be advanced by cairo-show-text.

Note that whitespace characters do not directly contribute to the size of the rectangle
(extents.width and extents.height). They do contribute indirectly by changing the
position of non-whitespace characters. In particular, trailing whitespace characters
are likely to not affect the size of the rectangle, though they will affect the x advance
and y advance values.

cr a <cairo-t>

utf8 a NUL-terminated string of text encoded in UTF-8, or ‘#f’

extents a <cairo-text-extents-t> object into which the results will be stored

[Function]cairo-glyph-extents (cr <cairo-t>) (glyphs <cairo-glyph-t>)
(num-glyphs <int>) (extents <cairo-text-extents-t>)

Gets the extents for an array of glyphs. The extents describe a user-space rect-
angle that encloses the "inked" portion of the glyphs, (as they would be drawn by
cairo-show-glyphs). Additionally, the x advance and y advance values indicate the
amount by which the current point would be advanced by cairo-show-glyphs.

Note that whitespace glyphs do not contribute to the size of the rectangle (ex-
tents.width and extents.height).

cr a <cairo-t>

glyphs an array of <cairo-glyph-t> objects

num-glyphs
the number of elements in glyphs

extents a <cairo-text-extents-t> object into which the results will be stored

[Function]cairo-toy-font-face-create (family <char>)
(slant <cairo-font-slant-t>) (weight <cairo-font-weight-t>)
⇒ (ret <cairo-font-face-t >)

Creates a font face from a triplet of family, slant, and weight. These font faces are
used in implementation of the the <cairo-t> "toy" font API.

If family is the zero-length string "", the platform-specific default family is assumed.
The default family then can be queried using cairo-toy-font-face-get-family.

The cairo-select-font-face function uses this to create font faces. See that func-
tion for limitations and other details of toy font faces.

family a font family name, encoded in UTF-8

slant the slant for the font

weight the weight for the font

ret a newly created <cairo-font-face-t>. Free with cairo-font-face-

destroy when you are done using it.

Since 1.8

42

[Function]cairo-toy-font-face-get-family
(font-face <cairo-font-face-t>) ⇒ (ret <char >)

Gets the familly name of a toy font.

font-face A toy font face

ret The family name. This string is owned by the font face and remains valid
as long as the font face is alive (referenced).

Since 1.8

[Function]cairo-toy-font-face-get-slant
(font-face <cairo-font-face-t>) ⇒ (ret <cairo-font-slant-t>)

Gets the slant a toy font.

font-face A toy font face

ret The slant value

Since 1.8

[Function]cairo-toy-font-face-get-weight
(font-face <cairo-font-face-t>) ⇒ (ret <cairo-font-weight-t>)

Gets the weight a toy font.

font-face A toy font face

ret The weight value

Since 1.8

43

7 Font Faces

Base class for font faces

7.1 Overview

<cairo-font-face> represents a particular font at a particular weight, slant, and other
characteristic but no size, transformation, or size.

Font faces are created using font-backend-specific constructors, typically of
the form cairo backend-font-face-create, or implicitly using the toy text API
by way of cairo-select-font-face. The resulting face can be accessed using
cairo-get-font-face.

7.2 Usage

[Function]cairo-font-face-get-type (font-face <cairo-font-face-t>)
⇒ (ret <cairo-font-type-t>)

This function returns the type of the backend used to create a font face. See
<cairo-font-type-t> for available types.

font-face a font face

ret The type of font-face.

Since 1.2

44

8 Scaled Fonts

Font face at particular size and options

8.1 Overview

<cairo-scaled-font> represents a realization of a font face at a particular size and trans-
formation and a certain set of font options.

8.2 Usage

[Function]cairo-scaled-font-create (font-face <cairo-font-face-t>)
(font-matrix <cairo-matrix-t>) (ctm <cairo-matrix-t>)
(options <cairo-font-options-t>) ⇒ (ret <cairo-scaled-font-t
>)

Creates a <cairo-scaled-font-t> object from a font face and matrices that describe
the size of the font and the environment in which it will be used.

font-face a <cairo-font-face-t>

font-matrix
font space to user space transformation matrix for the font. In the sim-
plest case of a N point font, this matrix is just a scale by N, but it can
also be used to shear the font or stretch it unequally along the two axes.
See cairo-set-font-matrix.

ctm user to device transformation matrix with which the font will be used.

options options to use when getting metrics for the font and rendering with it.

ret a newly created <cairo-scaled-font-t>. Destroy with cairo-scaled-

font-destroy

[Function]cairo-scaled-font-extents
(scaled-font <cairo-scaled-font-t>)
(extents <cairo-font-extents-t>)

Gets the metrics for a <cairo-scaled-font-t>.

scaled-font
a <cairo-scaled-font-t>

extents a <cairo-font-extents-t> which to store the retrieved extents.

[Function]cairo-scaled-font-text-extents
(scaled-font <cairo-scaled-font-t>) (utf8 <char>)
(extents <cairo-text-extents-t>)

Gets the extents for a string of text. The extents describe a user-space rectangle that
encloses the "inked" portion of the text drawn at the origin (0,0) (as it would be
drawn by cairo-show-text if the cairo graphics state were set to the same font face,
font matrix, ctm, and font options as scaled-font). Additionally, the x advance and
y advance values indicate the amount by which the current point would be advanced
by cairo-show-text.

Chapter 8: Scaled Fonts 45

Note that whitespace characters do not directly contribute to the size of the rectangle
(extents.width and extents.height). They do contribute indirectly by changing the
position of non-whitespace characters. In particular, trailing whitespace characters
are likely to not affect the size of the rectangle, though they will affect the x advance
and y advance values.

scaled-font
a <cairo-scaled-font-t>

utf8 a NUL-terminated string of text, encoded in UTF-8

extents a <cairo-text-extents-t> which to store the retrieved extents.

Since 1.2

[Function]cairo-scaled-font-glyph-extents
(scaled-font <cairo-scaled-font-t>) (glyphs <cairo-glyph-t>)
(num-glyphs <int>) (extents <cairo-text-extents-t>)

Gets the extents for an array of glyphs. The extents describe a user-space rect-
angle that encloses the "inked" portion of the glyphs, (as they would be drawn
by cairo-show-glyphs if the cairo graphics state were set to the same font face,
font matrix, ctm, and font options as scaled-font). Additionally, the x advance and
y advance values indicate the amount by which the current point would be advanced
by cairo-show-glyphs.

Note that whitespace glyphs do not contribute to the size of the rectangle (ex-
tents.width and extents.height).

scaled-font
a <cairo-scaled-font-t>

glyphs an array of glyph IDs with X and Y offsets.

num-glyphs
the number of glyphs in the glyphs array

extents a <cairo-text-extents-t> which to store the retrieved extents.

[Function]cairo-scaled-font-text-to-glyphs
(scaled-font <cairo-scaled-font-t>) (x <double>) (y <double>)
(utf8 <char>) (utf8-len <int>) ⇒ (ret <cairo-status-t>)
(glyphs <cairo-glyph-t*>) (num-glyphs <int>)
(clusters <cairo-text-cluster-t*>) (num-clusters <int>)
(cluster-flags <cairo-text-cluster-flags-t>)

Converts UTF-8 text to an array of glyphs, optionally with cluster mapping, that can
be used to render later using scaled-font.

If glyphs initially points to a non-‘#f’ value, that array is used as a glyph buffer,
and num-glyphs should point to the number of glyph entries available there. If the
provided glyph array is too short for the conversion, a new glyph array is allocated
using cairo-glyph-allocate and placed in glyphs. Upon return, num-glyphs al-
ways contains the number of generated glyphs. If the value glyphs points to has
changed after the call, the user is responsible for freeing the allocated glyph array

Chapter 8: Scaled Fonts 46

using cairo-glyph-free. This may happen even if the provided array was large
enough.

If clusters is not ‘#f’, num-clusters and cluster-flags should not be ‘#f’, and cluster
mapping will be computed. The semantics of how cluster array allocation works is
similar to the glyph array. That is, if clusters initially points to a non-‘#f’ value,
that array is used as a cluster buffer, and num-clusters should point to the number
of cluster entries available there. If the provided cluster array is too short for the
conversion, a new cluster array is allocated using cairo-text-cluster-allocate

and placed in clusters. Upon return, num-clusters always contains the number of
generated clusters. If the value clusters points at has changed after the call, the user
is responsible for freeing the allocated cluster array using cairo-text-cluster-free.
This may happen even if the provided array was large enough.

In the simplest case, glyphs and clusters can point to ‘#f’ initially and a suitable
array will be allocated. In code:

cairo_status_t status;

cairo_glyph_t *glyphs = NULL;

int num_glyphs;

cairo_text_cluster_t *clusters = NULL;

int num_clusters;

cairo_text_cluster_flags_t cluster_flags;

status = cairo_scaled_font_text_to_glyphs (scaled_font,

x, y,

utf8, utf8_len,

&glyphs, &num_glyphs,

&clusters, &num_clusters, &cluster_flags);

if (status == CAIRO_STATUS_SUCCESS) {

cairo_show_text_glyphs (cr,

utf8, utf8_len,

glyphs, num_glyphs,

clusters, num_clusters, cluster_flags);

cairo_glyph_free (glyphs);

cairo_text_cluster_free (clusters);

}

If no cluster mapping is needed:

cairo_status_t status;

cairo_glyph_t *glyphs = NULL;

int num_glyphs;

status = cairo_scaled_font_text_to_glyphs (scaled_font,

Chapter 8: Scaled Fonts 47

x, y,

utf8, utf8_len,

&glyphs, &num_glyphs,

NULL, NULL,

NULL);

if (status == CAIRO_STATUS_SUCCESS) {

cairo_show_glyphs (cr, glyphs, num_glyphs);

cairo_glyph_free (glyphs);

}

If stack-based glyph and cluster arrays are to be used for small arrays:

cairo_status_t status;

cairo_glyph_t stack_glyphs[40];

cairo_glyph_t *glyphs = stack_glyphs;

int num_glyphs = sizeof (stack_glyphs) / sizeof (stack_glyphs[0]);

cairo_text_cluster_t stack_clusters[40];

cairo_text_cluster_t *clusters = stack_clusters;

int num_clusters = sizeof (stack_clusters) / sizeof (stack_clusters[0]);

cairo_text_cluster_flags_t cluster_flags;

status = cairo_scaled_font_text_to_glyphs (scaled_font,

x, y,

utf8, utf8_len,

&glyphs, &num_glyphs,

&clusters, &num_clusters, &cluster_flags);

if (status == CAIRO_STATUS_SUCCESS) {

cairo_show_text_glyphs (cr,

utf8, utf8_len,

glyphs, num_glyphs,

clusters, num_clusters, cluster_flags);

if (glyphs != stack_glyphs)

cairo_glyph_free (glyphs);

if (clusters != stack_clusters)

cairo_text_cluster_free (clusters);

}

For details of how clusters, num-clusters, and cluster-flags map input UTF-8 text to
the output glyphs see cairo-show-text-glyphs.

The output values can be readily passed to cairo-show-text-glyphscairo-show-

glyphs, or related functions, assuming that the exact same scaled-font is used for the
operation.

scaled-font
a <cairo-scaled-font-t>

Chapter 8: Scaled Fonts 48

x X position to place first glyph

y Y position to place first glyph

utf8 a string of text encoded in UTF-8

utf8-len length of utf8 in bytes, or -1 if it is NUL-terminated

glyphs pointer to array of glyphs to fill

num-glyphs
pointer to number of glyphs

clusters pointer to array of cluster mapping information to fill, or ‘#f’

num-clusters
pointer to number of clusters, or ‘#f’

cluster-flags
pointer to location to store cluster flags corresponding to the output
clusters, or ‘#f’

ret ‘CAIRO_STATUS_SUCCESS’ upon success, or an error status if the input
values are wrong or if conversion failed. If the input values are correct
but the conversion failed, the error status is also set on scaled-font.

Since 1.8

[Function]cairo-scaled-font-get-font-face
(scaled-font <cairo-scaled-font-t>) ⇒ (ret <cairo-font-face-t
>)

Gets the font face that this scaled font uses. This is the font face passed to
cairo-scaled-font-create.

scaled-font
a <cairo-scaled-font-t>

ret The <cairo-font-face-t> with which scaled-font was created.

Since 1.2

[Function]cairo-scaled-font-get-font-options
(scaled-font <cairo-scaled-font-t>)
(options <cairo-font-options-t>)

Stores the font options with which scaled-font was created into options.

scaled-font
a <cairo-scaled-font-t>

options return value for the font options

Since 1.2

[Function]cairo-scaled-font-get-font-matrix
(scaled-font <cairo-scaled-font-t>)
(font-matrix <cairo-matrix-t>)

Stores the font matrix with which scaled-font was created into matrix.

scaled-font
a <cairo-scaled-font-t>

49

font-matrix
return value for the matrix

Since 1.2

[Function]cairo-scaled-font-get-ctm
(scaled-font <cairo-scaled-font-t>) (ctm <cairo-matrix-t>)

Stores the CTM with which scaled-font was created into ctm. Note that the trans-
lation offsets (x0, y0) of the CTM are ignored by cairo-scaled-font-create. So,
the matrix this function returns always has 0,0 as x0,y0.

scaled-font
a <cairo-scaled-font-t>

ctm return value for the CTM

Since 1.2

[Function]cairo-scaled-font-get-type
(scaled-font <cairo-scaled-font-t>)
⇒ (ret <cairo-font-type-t>)

This function returns the type of the backend used to create a scaled font. See
<cairo-font-type-t> for available types. However, this function never returns
‘CAIRO_FONT_TYPE_TOY’.

scaled-font
a <cairo-scaled-font-t>

ret The type of scaled-font.

Since 1.2

50

9 Font Options

How a font should be rendered

9.1 Overview

The font options specify how fonts should be rendered. Most of the time the font options
implied by a surface are just right and do not need any changes, but for pixel-based targets
tweaking font options may result in superior output on a particular display.

9.2 Usage

[Function]cairo-font-options-create ⇒ (ret <cairo-font-options-t >)
Allocates a new font options object with all options initialized to default values.

ret a newly allocated <cairo-font-options-t>. Free with cairo-font-

options-destroy. This function always returns a valid pointer; if mem-
ory cannot be allocated, then a special error object is returned where
all operations on the object do nothing. You can check for this with
cairo-font-options-status.

[Function]cairo-font-options-copy (original <cairo-font-options-t>)
⇒ (ret <cairo-font-options-t >)

Allocates a new font options object copying the option values from original.

original a <cairo-font-options-t>

ret a newly allocated <cairo-font-options-t>. Free with cairo-font-

options-destroy. This function always returns a valid pointer; if mem-
ory cannot be allocated, then a special error object is returned where
all operations on the object do nothing. You can check for this with
cairo-font-options-status.

[Function]cairo-font-options-merge (options <cairo-font-options-t>)
(other <cairo-font-options-t>)

Merges non-default options from other into options, replacing existing values. This
operation can be thought of as somewhat similar to compositing other onto options
with the operation of ‘CAIRO_OPERATION_OVER’.

options a <cairo-font-options-t>

other another <cairo-font-options-t>

[Function]cairo-font-options-hash (options <cairo-font-options-t>)
⇒ (ret <unsigned long>)

Compute a hash for the font options object; this value will be useful when storing an
object containing a <cairo-font-options-t> in a hash table.

options a <cairo-font-options-t>

ret the hash value for the font options object. The return value can be cast
to a 32-bit type if a 32-bit hash value is needed.

51

[Function]cairo-font-options-set-antialias
(options <cairo-font-options-t>)
(antialias <cairo-antialias-t>)

Sets the antialiasing mode for the font options object. This specifies the type of
antialiasing to do when rendering text.

options a <cairo-font-options-t>

antialias the new antialiasing mode

[Function]cairo-font-options-get-antialias
(options <cairo-font-options-t>) ⇒ (ret <cairo-antialias-t>)

Gets the antialiasing mode for the font options object.

options a <cairo-font-options-t>

ret the antialiasing mode

[Function]cairo-font-options-set-hint-style
(options <cairo-font-options-t>)
(hint-style <cairo-hint-style-t>)

Sets the hint style for font outlines for the font options object. This controls whether
to fit font outlines to the pixel grid, and if so, whether to optimize for fidelity or
contrast. See the documentation for <cairo-hint-style-t> for full details.

options a <cairo-font-options-t>

hint-style the new hint style

[Function]cairo-font-options-get-hint-style
(options <cairo-font-options-t>) ⇒ (ret <cairo-hint-style-t>)

Gets the hint style for font outlines for the font options object. See the documentation
for <cairo-hint-style-t> for full details.

options a <cairo-font-options-t>

ret the hint style for the font options object

[Function]cairo-font-options-set-hint-metrics
(options <cairo-font-options-t>)
(hint-metrics <cairo-hint-metrics-t>)

Sets the metrics hinting mode for the font options object. This controls whether
metrics are quantized to integer values in device units. See the documentation for
<cairo-hint-metrics-t> for full details.

options a <cairo-font-options-t>

hint-metrics
the new metrics hinting mode

52

10 FreeType Fonts

Font support for FreeType

10.1 Overview

The FreeType font backend is primarily used to render text on GNU/Linux systems, but
can be used on other platforms too.

10.2 Usage

53

11 Win32 Fonts

Font support for Microsoft Windows

11.1 Overview

The Microsoft Windows font backend is primarily used to render text on Microsoft Windows
systems.

11.2 Usage

54

12 Quartz Fonts

Font support via CGFont on OS X

12.1 Overview

The Quartz font backend is primarily used to render text on Apple MacOS X systems. The
CGFont API is used for the internal implementation of the font backend methods.

12.2 Usage

55

13 User Fonts

Font support with font data provided by the user

13.1 Overview

The user-font feature allows the cairo user to provide drawings for glyphs in a font. This is
most useful in implementing fonts in non-standard formats, like SVG fonts and Flash fonts,
but can also be used by games and other application to draw "funky" fonts.

13.2 Usage

[Function]cairo-user-font-face-create ⇒ (ret <cairo-font-face-t >)
Creates a new user font-face.

Use the setter functions to associate callbacks with the returned user font. The only
mandatory callback is render glyph.

After the font-face is created, the user can attach arbitrary data (the actual font data)
to it using cairo-font-face-set-user-data and access it from the user-font call-
backs by using cairo-scaled-font-get-font-face followed by cairo-font-face-

get-user-data.

ret a newly created <cairo-font-face-t>. Free with cairo-font-face-

destroy when you are done using it.

Since 1.8

[Function]cairo-user-font-face-set-init-func
(font-face <cairo-font-face-t>)
(init-func <cairo-user-scaled-font-init-func-t>)

Sets the scaled-font initialization function of a user-font. See <cairo-user-scaled-

font-init-func-t> for details of how the callback works.

The font-face should not be immutable or a ‘CAIRO_STATUS_USER_FONT_IMMUTABLE’
error will occur. A user font-face is immutable as soon as a scaled-font is created from
it.

font-face A user font face

init-func The init callback, or ‘#f’

Since 1.8

56

14 cairo device t

interface to underlying rendering system

14.1 Overview

Devices are the abstraction Cairo employs for the rendering system used by a
<cairo-surface>. You can get the device of a surface using cairo-surface-get-device.

Devices are created using custom functions specific to the rendering system you want to
use. See the documentation for the surface types for those functions.

An important function that devices fulfill is sharing access to the rendering system
between Cairo and your application. If you want to access a device directly that you used
to draw to with Cairo, you must first call cairo-device-flush to ensure that Cairo finishes
all operations on the device and resets it to a clean state.

Cairo also provides the functions cairo-device-acquire and cairo-device-release

to synchronize access to the rendering system in a multithreaded environment. This is done
internally, but can also be used by applications.

Putting this all together, a function that works with devices should look something like
this:

void

my_device_modifying_function (cairo_device_t *device)

{

cairo_status_t status;

// Ensure the device is properly reset

cairo_device_flush (device);

// Try to acquire the device

status = cairo_device_acquire (device);

if (status != CAIRO_STATUS_SUCCESS) {

printf ("Failed to acquire the device: %s\n", cairo_status_to_string (status));

return;

}

// Do the custom operations on the device here.

// But do not call any Cairo functions that might acquire devices.

// Release the device when done.

cairo_device_release (device);

}

Please refer to the documentation of each backend for additional usage requirements,
guarantees provided, and interactions with existing surface API of the device functions for
surfaces of that type.

Chapter 14: cairo device t 57

14.2 Usage

[Function]cairo-device-finish (device <cairo-device-t>)
This function finishes the device and drops all references to external resources. All
surfaces, fonts and other objects created for this device will be finished, too. Fur-
ther operations on the device will not affect the device but will instead trigger a
‘CAIRO_STATUS_DEVICE_FINISHED’ error.

When the last call to cairo-device-destroy decreases the reference count to zero,
cairo will call cairo-device-finish if it hasn’t been called already, before freeing
the resources associated with the device.

This function may acquire devices.

device the <cairo-device-t> to finish

Since 1.10

[Function]cairo-device-flush (device <cairo-device-t>)
Finish any pending operations for the device and also restore any temporary mod-
ifications cairo has made to the device’s state. This function must be called before
switching from using the device with Cairo to operating on it directly with native
APIs. If the device doesn’t support direct access, then this function does nothing.

This function may acquire devices.

device a <cairo-device-t>

Since 1.10

[Function]cairo-device-get-type (device <cairo-device-t>)
⇒ (ret <cairo-device-type-t>)

This function returns the type of the device. See <cairo-device-type-t> for avail-
able types.

device a <cairo-device-t>

ret The type of device.

Since 1.10

[Function]cairo-device-acquire (device <cairo-device-t>)
⇒ (ret <cairo-status-t>)

Acquires the device for the current thread. This function will block until no other
thread has acquired the device.

If the return value is ‘CAIRO_STATUS_SUCCESS’, you successfully acquired the device.
From now on your thread owns the device and no other thread will be able to acquire
it until a matching call to cairo-device-release. It is allowed to recursively acquire
the device multiple times from the same thread.

You must never acquire two different devices at the same time unless this is explicitly
allowed. Otherwise the possibility of deadlocks exist.

As various Cairo functions can acquire devices when called, these functions may also
cause deadlocks when you call them with an acquired device. So you must not have a
device acquired when calling them. These functions are marked in the documentation.

device a <cairo-device-t>

58

ret ‘CAIRO_STATUS_SUCCESS’ on success or an error code if the device is in
an error state and could not be acquired. After a successful call to
cairo-device-acquire, a matching call to cairo-device-release is
required.

Since 1.10

[Function]cairo-device-release (device <cairo-device-t>)
Releases a device previously acquired using cairo-device-acquire. See that func-
tion for details.

device a <cairo-device-t>

Since 1.10

59

15 cairo surface t

Base class for surfaces

15.1 Overview

<cairo-surface> is the abstract type representing all different drawing targets that cairo
can render to. The actual drawings are performed using a cairo context.

A cairo surface is created by using backend-specific constructors, typically of the form
cairo backend-surface-create.

Most surface types allow accessing the surface without using Cairo functions. If you
do this, keep in mind that it is mandatory that you call cairo-surface-flush before
reading from or writing to the surface and that you must use cairo-surface-mark-dirty
after modifying it. Note that for other surface types it might be necessary to acquire the
surface’s device first. See cairo-device-acquire for a discussion of devices.

void

modify_image_surface (cairo_surface_t *surface)

{

unsigned char *data;

int width, height, stride;

// flush to ensure all writing to the image was done

cairo_surface_flush (surface);

// modify the image

data = cairo_image_surface_get_data (surface);

width = cairo_image_surface_get_width (surface);

height = cairo_image_surface_get_height (surface);

stride = cairo_image_surface_get_stride (surface);

modify_image_data (data, width, height, stride);

// mark the image dirty so Cairo clears its caches.

cairo_surface_mark_dirty (surface);

}

15.2 Usage

[Function]cairo-surface-create-similar (other <cairo-surface-t>)
(content <cairo-content-t>) (width <int>) (height <int>)
⇒ (ret <cairo-surface-t >)

Create a new surface that is as compatible as possible with an existing surface. For
example the new surface will have the same fallback resolution and font options as
other. Generally, the new surface will also use the same backend as other, unless that
is not possible for some reason. The type of the returned surface may be examined
with cairo-surface-get-type.

Chapter 15: cairo surface t 60

Initially the surface contents are all 0 (transparent if contents have transparency,
black otherwise.)

other an existing surface used to select the backend of the new surface

content the content for the new surface

width width of the new surface, (in device-space units)

height height of the new surface (in device-space units)

ret a pointer to the newly allocated surface. The caller owns the surface and
should call cairo-surface-destroy when done with it. This function
always returns a valid pointer, but it will return a pointer to a "nil"
surface if other is already in an error state or any other error occurs.

[Function]cairo-surface-create-for-rectangle
(target <cairo-surface-t>) (x <double>) (y <double>)
(width <double>) (height <double>) ⇒ (ret <cairo-surface-t >)

Create a new surface that is a rectangle within the target surface. All operations
drawn to this surface are then clipped and translated onto the target surface. Nothing
drawn via this sub-surface outside of its bounds is drawn onto the target surface,
making this a useful method for passing constrained child surfaces to library routines
that draw directly onto the parent surface, i.e. with no further backend allocations,
double buffering or copies.

The semantics of subsurfaces have not been finalized yet unless the rectangle is in full
device units, is contained within the extents of the target surface, and the target or
subsurface’s device transforms are not changed.

target an existing surface for which the sub-surface will point to

x the x-origin of the sub-surface from the top-left of the target surface (in
device-space units)

y the y-origin of the sub-surface from the top-left of the target surface (in
device-space units)

width width of the sub-surface (in device-space units)

height height of the sub-surface (in device-space units)

ret a pointer to the newly allocated surface. The caller owns the surface and
should call cairo-surface-destroy when done with it. This function
always returns a valid pointer, but it will return a pointer to a "nil"
surface if other is already in an error state or any other error occurs.

Since 1.10

[Function]cairo-surface-finish (surface <cairo-surface-t>)
This function finishes the surface and drops all references to external resources. For
example, for the Xlib backend it means that cairo will no longer access the drawable,
which can be freed. After calling cairo-surface-finish the only valid operations
on a surface are getting and setting user, referencing and destroying, and flushing and

Chapter 15: cairo surface t 61

finishing it. Further drawing to the surface will not affect the surface but will instead
trigger a ‘CAIRO_STATUS_SURFACE_FINISHED’ error.

When the last call to cairo-surface-destroy decreases the reference count to zero,
cairo will call cairo-surface-finish if it hasn’t been called already, before freeing
the resources associated with the surface.

surface the <cairo-surface-t> to finish

[Function]cairo-surface-flush (surface <cairo-surface-t>)
Do any pending drawing for the surface and also restore any temporary modifications
cairo has made to the surface’s state. This function must be called before switching
from drawing on the surface with cairo to drawing on it directly with native APIs. If
the surface doesn’t support direct access, then this function does nothing.

surface a <cairo-surface-t>

[Function]cairo-surface-get-device (surface <cairo-surface-t>)
⇒ (ret <cairo-device-t >)

This function returns the device for a surface. See <cairo-device-t>.

surface a <cairo-surface-t>

ret The device for surface or ‘#f’ if the surface does not have an associated
device.

Since 1.10

[Function]cairo-surface-get-font-options (surface <cairo-surface-t>)
(options <cairo-font-options-t>)

Retrieves the default font rendering options for the surface. This allows display sur-
faces to report the correct subpixel order for rendering on them, print surfaces to dis-
able hinting of metrics and so forth. The result can then be used with cairo-scaled-

font-create.

surface a <cairo-surface-t>

options a <cairo-font-options-t> object into which to store the retrieved op-
tions. All existing values are overwritten

[Function]cairo-surface-get-content (surface <cairo-surface-t>)
⇒ (ret <cairo-content-t>)

This function returns the content type of surface which indicates whether the surface
contains color and/or alpha information. See <cairo-content-t>.

surface a <cairo-surface-t>

ret The content type of surface.

Since 1.2

[Function]cairo-surface-mark-dirty (surface <cairo-surface-t>)
Tells cairo that drawing has been done to surface using means other than cairo, and
that cairo should reread any cached areas. Note that you must call cairo-surface-
flush before doing such drawing.

surface a <cairo-surface-t>

Chapter 15: cairo surface t 62

[Function]cairo-surface-mark-dirty-rectangle
(surface <cairo-surface-t>) (x <int>) (y <int>) (width <int>)
(height <int>)

Like cairo-surface-mark-dirty, but drawing has been done only to the specified
rectangle, so that cairo can retain cached contents for other parts of the surface.

Any cached clip set on the surface will be reset by this function, to make sure that
future cairo calls have the clip set that they expect.

surface a <cairo-surface-t>

x X coordinate of dirty rectangle

y Y coordinate of dirty rectangle

width width of dirty rectangle

height height of dirty rectangle

[Function]cairo-surface-set-device-offset (surface <cairo-surface-t>)
(x-offset <double>) (y-offset <double>)

Sets an offset that is added to the device coordinates determined by the CTM when
drawing to surface. One use case for this function is when we want to create a
<cairo-surface-t> that redirects drawing for a portion of an onscreen surface to
an offscreen surface in a way that is completely invisible to the user of the cairo
API. Setting a transformation via cairo-translate isn’t sufficient to do this, since
functions like cairo-device-to-user will expose the hidden offset.

Note that the offset affects drawing to the surface as well as using the surface in a
source pattern.

surface a <cairo-surface-t>

x-offset the offset in the X direction, in device units

y-offset the offset in the Y direction, in device units

[Function]cairo-surface-get-device-offset (surface <cairo-surface-t>)
⇒ (x-offset <double>) (y-offset <double>)

This function returns the previous device offset set by cairo-surface-set-device-

offset.

surface a <cairo-surface-t>

x-offset the offset in the X direction, in device units

y-offset the offset in the Y direction, in device units

Since 1.2

[Function]cairo-surface-get-type (surface <cairo-surface-t>)
⇒ (ret <cairo-surface-type-t>)

This function returns the type of the backend used to create a surface. See
<cairo-surface-type-t> for available types.

surface a <cairo-surface-t>

ret The type of surface.

Since 1.2

Chapter 15: cairo surface t 63

[Function]cairo-surface-copy-page (surface <cairo-surface-t>)
Emits the current page for backends that support multiple pages, but doesn’t clear
it, so that the contents of the current page will be retained for the next page. Use
cairo-surface-show-page if you want to get an empty page after the emission.

There is a convenience function for this that takes a <cairo-t>, namely cairo-copy-

page.

surface a <cairo-surface-t>

Since 1.6

[Function]cairo-surface-show-page (surface <cairo-surface-t>)
Emits and clears the current page for backends that support multiple pages. Use
cairo-surface-copy-page if you don’t want to clear the page.

There is a convenience function for this that takes a <cairo-t>, namely cairo-show-

page.

surface a <cairo--surface-t>

Since 1.6

[Function]cairo-surface-has-show-text-glyphs
(surface <cairo-surface-t>) ⇒ (ret <cairo-bool-t>)

Returns whether the surface supports sophisticated cairo-show-text-glyphs oper-
ations. That is, whether it actually uses the provided text and cluster data to a
cairo-show-text-glyphs call.

Note: Even if this function returns ‘#f’, a cairo-show-text-glyphs operation tar-
geted at surface will still succeed. It just will act like a cairo-show-glyphs operation.
Users can use this function to avoid computing UTF-8 text and cluster mapping if
the target surface does not use it.

surface a <cairo-surface-t>

ret ‘#t’ if surface supports cairo-show-text-glyphs, ‘#f’ otherwise

Since 1.8

[Function]cairo-surface-get-mime-data (surface <cairo-surface-t>)
(mime-type <string>) ⇒ (ret <bytevector>)

Return data previously associated with the surface with the given mime-type.

surface a <cairo-surface-t>

mime-type
a string denoting the MIME type, for example "image/jpeg",
"image/png", "image/jp2", or "text/x-uri"

ret #f if no data was associated with the surface, otherwise a fresh bytevector
holding a copy of the data

Since 1.11

64

[Function]cairo-surface-set-mime-data (surface <cairo-surface-t>)
(mime-type <string>) (data <bytevector>)

Associate image data with a surface with the given mime-type.

Attach an image in the format mime type to surface. To remove the data from a
surface, call this function with same mime type and #f for data.

The attached image (or filename) data can later be used by backends which support
it (currently: PDF, PS, SVG and Win32 Printing surfaces) to emit this data instead
of making a snapshot of the surface. This approach tends to be faster and requires
less memory and disk space.

See corresponding backend surface docs for details about which MIME types it can
handle. Caution: the associated MIME data will be discarded if you draw on the
surface afterwards. Use this function with care.

Even if a backend supports a MIME type, that does not mean cairo will always be
able to use the attached MIME data. For example, if the backend does not natively
support the compositing operation used to apply the MIME data to the backend. In
that case, the MIME data will be ignored. Therefore, to apply an image in all cases,
it is best to create an image surface which contains the decoded image data and then
attach the MIME data to that. This ensures the image will always be used while still
allowing the MIME data to be used whenever possible.

surface a <cairo-surface-t>

mime-type
a string denoting the MIME type, for example "image/jpeg",
"image/png", "image/jp2", or "text/x-uri"

data a bytevector of data to associate with the surface, or #f to remove the
association

Since 1.11

65

16 Image Surfaces

Rendering to memory buffers

16.1 Overview

Image surfaces provide the ability to render to memory buffers either allocated by cairo or
by the calling code. The supported image formats are those defined in <cairo-format-t>.

16.2 Usage

[Function]cairo-format-stride-for-width (format <cairo-format-t>)
(width <int>) ⇒ (ret <int>)

This function provides a stride value that will respect all alignment requirements of
the accelerated image-rendering code within cairo. Typical usage will be of the form:

int stride;

unsigned char *data;

cairo_surface_t *surface;

stride = cairo_format_stride_for_width (format, width);

data = malloc (stride * height);

surface = cairo_image_surface_create_for_data (data, format,

width, height,

stride);

format A <cairo-format-t> value

width The desired width of an image surface to be created.

ret the appropriate stride to use given the desired format and width, or -1 if
either the format is invalid or the width too large.

Since 1.6

[Function]cairo-image-surface-create (format <cairo-format-t>)
(width <int>) (height <int>) ⇒ (ret <cairo-surface-t >)

Creates an image surface of the specified format and dimensions. Initially the sur-
face contents are all 0. (Specifically, within each pixel, each color or alpha channel
belonging to format will be 0. The contents of bits within a pixel, but not belonging
to the given format are undefined).

format format of pixels in the surface to create

width width of the surface, in pixels

height height of the surface, in pixels

ret a pointer to the newly created surface. The caller owns the surface and
should call cairo-surface-destroy when done with it. This function al-
ways returns a valid pointer, but it will return a pointer to a "nil" surface
if an error such as out of memory occurs. You can use cairo-surface-

status to check for this.

66

[Function]cairo-image-surface-get-format (surface <cairo-surface-t>)
⇒ (ret <cairo-format-t>)

Get the format of the surface.

surface a <cairo-image-surface-t>

ret the format of the surface

Since 1.2

[Function]cairo-image-surface-get-width (surface <cairo-surface-t>)
⇒ (ret <int>)

Get the width of the image surface in pixels.

surface a <cairo-image-surface-t>

ret the width of the surface in pixels.

[Function]cairo-image-surface-get-height (surface <cairo-surface-t>)
⇒ (ret <int>)

Get the height of the image surface in pixels.

surface a <cairo-image-surface-t>

ret the height of the surface in pixels.

[Function]cairo-image-surface-get-stride (surface <cairo-surface-t>)
⇒ (ret <int>)

Get the stride of the image surface in bytes

surface a <cairo-image-surface-t>

ret the stride of the image surface in bytes (or 0 if surface is not an image
surface). The stride is the distance in bytes from the beginning of one
row of the image data to the beginning of the next row.

Since 1.2

67

17 PDF Surfaces

Rendering PDF documents

17.1 Overview

The PDF surface is used to render cairo graphics to Adobe PDF files and is a multi-page
vector surface backend.

17.2 Usage

[Function]cairo-pdf-surface-create (width-in-points <double>)
(height-in-points <double>) [(filename <char>)]
⇒ (ret <cairo-surface-t >)

Creates a PDF surface of the specified size in points to be written to filename. If
filename is not given, the output is sent to the current output port.

filename a filename for the PDF output (must be writable), ‘#f’ may be used to
specify no output. This will generate a PDF surface that may be queried
and used as a source, without generating a temporary file.

width-in-points
width of the surface, in points (1 point == 1/72.0 inch)

height-in-points
height of the surface, in points (1 point == 1/72.0 inch)

ret a pointer to the newly created surface. The caller owns the surface and
should call cairo-surface-destroy when done with it. This function al-
ways returns a valid pointer, but it will return a pointer to a "nil" surface
if an error such as out of memory occurs. You can use cairo-surface-

status to check for this.

Since 1.2

[Function]cairo-pdf-get-versions ⇒ (versions <cairo-pdf-version-t
const*>) (num-versions <int>)

Used to retrieve the list of supported versions. See cairo-pdf-surface-restrict-

to-version.

versions supported version list

num-versions
list length

Since 1.10

[Function]cairo-pdf-surface-set-size (surface <cairo-surface-t>)
(width-in-points <double>) (height-in-points <double>)

Changes the size of a PDF surface for the current (and subsequent) pages.

This function should only be called before any drawing operations have been per-
formed on the current page. The simplest way to do this is to call this function

68

immediately after creating the surface or immediately after completing a page with
either cairo-show-page or cairo-copy-page.

surface a PDF <cairo-surface-t>

width-in-points
new surface width, in points (1 point == 1/72.0 inch)

height-in-points
new surface height, in points (1 point == 1/72.0 inch)

Since 1.2

69

18 PNG Support

Reading and writing PNG images

18.1 Overview

The PNG functions allow reading PNG images into image surfaces, and writing any surface
to a PNG file.

18.2 Usage

[Function]cairo-image-surface-create-from-png (filename <char>)
⇒ (ret <cairo-surface-t >)

Creates a new image surface and initializes the contents to the given PNG file.

filename name of PNG file to load

ret a new <cairo-surface-t> initialized with the contents of the PNG file,
or a "nil" surface if any error occurred. A nil surface can be checked for
with cairo surface status(surface) which may return one of the following
values: ‘CAIRO_STATUS_NO_MEMORY’‘CAIRO_STATUS_FILE_NOT_FOUND’‘CAI
RO_STATUS_READ_ERROR’ Alternatively, you can allow errors to propagate
through the drawing operations and check the status on the context
upon completion using cairo-status.

[Function]cairo-surface-write-to-png (surface <cairo-surface-t>)
(filename <char>) ⇒ (ret <cairo-status-t>)

Writes the contents of surface to a new file filename as a PNG image.

surface a <cairo-surface-t> with pixel contents

filename the name of a file to write to

ret ‘CAIRO_STATUS_SUCCESS’ if the PNG file was written successfully. Oth-
erwise, ‘CAIRO_STATUS_NO_MEMORY’ if memory could not be allocated for
the operation or ‘CAIRO_STATUS_SURFACE_TYPE_MISMATCH’ if the surface
does not have pixel contents, or ‘CAIRO_STATUS_WRITE_ERROR’ if an I/O
error occurs while attempting to write the file.

70

19 PostScript Surfaces

Rendering PostScript documents

19.1 Overview

The PostScript surface is used to render cairo graphics to Adobe PostScript files and is a
multi-page vector surface backend.

19.2 Usage

[Function]cairo-ps-surface-create (width-in-points <double>)
(height-in-points <double>) (filename <char>)
⇒ (ret <cairo-surface-t >)

Creates a PostScript surface of the specified size in points to be written to filename.
See cairo-ps-surface-create-for-stream for a more flexible mechanism for han-
dling the PostScript output than simply writing it to a named file.

Note that the size of individual pages of the PostScript output can vary. See
cairo-ps-surface-set-size.

filename a filename for the PS output (must be writable), ‘#f’ may be used to
specify no output. This will generate a PS surface that may be queried
and used as a source, without generating a temporary file.

width-in-points
width of the surface, in points (1 point == 1/72.0 inch)

height-in-points
height of the surface, in points (1 point == 1/72.0 inch)

ret a pointer to the newly created surface. The caller owns the surface and
should call cairo-surface-destroy when done with it. This function al-
ways returns a valid pointer, but it will return a pointer to a "nil" surface
if an error such as out of memory occurs. You can use cairo-surface-

status to check for this.

Since 1.2

[Function]cairo-ps-surface-restrict-to-level
(surface <cairo-surface-t>) (level <cairo-ps-level-t>)

Restricts the generated PostSript file to level. See cairo-ps-get-levels for a list of
available level values that can be used here.

This function should only be called before any drawing operations have been per-
formed on the given surface. The simplest way to do this is to call this function
immediately after creating the surface.

surface a PostScript <cairo-surface-t>

level PostScript level

Since 1.6

Chapter 19: PostScript Surfaces 71

[Function]cairo-ps-get-levels ⇒ (levels <cairo-ps-level-t const*>)
(num-levels <int>)

Used to retrieve the list of supported levels. See cairo-ps-surface-restrict-to-

level.

levels supported level list

num-levels
list length

Since 1.6

[Function]cairo-ps-surface-set-eps (surface <cairo-surface-t>)
(eps <cairo-bool-t>)

If eps is ‘#t’, the PostScript surface will output Encapsulated PostScript.

This function should only be called before any drawing operations have been per-
formed on the current page. The simplest way to do this is to call this function
immediately after creating the surface. An Encapsulated PostScript file should never
contain more than one page.

surface a PostScript <cairo-surface-t>

eps ‘#t’ to output EPS format PostScript

Since 1.6

[Function]cairo-ps-surface-get-eps (surface <cairo-surface-t>)
⇒ (ret <cairo-bool-t>)

Check whether the PostScript surface will output Encapsulated PostScript.

surface a PostScript <cairo-surface-t>

ret ‘#t’ if the surface will output Encapsulated PostScript.

Since 1.6

[Function]cairo-ps-surface-set-size (surface <cairo-surface-t>)
(width-in-points <double>) (height-in-points <double>)

Changes the size of a PostScript surface for the current (and subsequent) pages.

This function should only be called before any drawing operations have been per-
formed on the current page. The simplest way to do this is to call this function
immediately after creating the surface or immediately after completing a page with
either cairo-show-page or cairo-copy-page.

surface a PostScript <cairo-surface-t>

width-in-points
new surface width, in points (1 point == 1/72.0 inch)

height-in-points
new surface height, in points (1 point == 1/72.0 inch)

Since 1.2

Chapter 19: PostScript Surfaces 72

[Function]cairo-ps-surface-dsc-comment (surface <cairo-surface-t>)
(comment <char>)

Emit a comment into the PostScript output for the given surface.

The comment is expected to conform to the PostScript Language Document Structur-
ing Conventions (DSC). Please see that manual for details on the available comments
and their meanings. In particular, the %‘IncludeFeature’ comment allows a device-
independent means of controlling printer device features. So the PostScript Printer
Description Files Specification will also be a useful reference.

The comment string must begin with a percent character (%) and the total length of
the string (including any initial percent characters) must not exceed 255 characters.
Violating either of these conditions will place surface into an error state. But beyond
these two conditions, this function will not enforce conformance of the comment with
any particular specification.

The comment string should not have a trailing newline.

The DSC specifies different sections in which particular comments can appear. This
function provides for comments to be emitted within three sections: the header, the
Setup section, and the PageSetup section. Comments appearing in the first two
sections apply to the entire document while comments in the BeginPageSetup section
apply only to a single page.

For comments to appear in the header section, this function should be called after
the surface is created, but before a call to cairo-ps-surface-begin-setup.

For comments to appear in the Setup section, this function should be called after
a call to cairo-ps-surface-begin-setup but before a call to cairo-ps-surface-

begin-page-setup.

For comments to appear in the PageSetup section, this function should be called after
a call to cairo-ps-surface-begin-page-setup.

Note that it is only necessary to call cairo-ps-surface-begin-page-setup for the
first page of any surface. After a call to cairo-show-page or cairo-copy-page com-
ments are unambiguously directed to the PageSetup section of the current page. But
it doesn’t hurt to call this function at the beginning of every page as that consistency
may make the calling code simpler.

As a final note, cairo automatically generates several comments on its own. As such,
applications must not manually generate any of the following comments:

Header section: %!PS-Adobe-3.0, %‘Creator’, %‘CreationDate’, %‘Pages’,
%‘BoundingBox’, %‘DocumentData’, %‘LanguageLevel’, %‘EndComments’.

Setup section: %‘BeginSetup’, %‘EndSetup’

PageSetup section: %‘BeginPageSetup’, %‘PageBoundingBox’, %‘EndPageSetup’.

Other sections: %‘BeginProlog’, %‘EndProlog’, %‘Page’, %‘Trailer’, %‘EOF’

Here is an example sequence showing how this function might be used:

cairo_surface_t *surface = cairo_ps_surface_create (filename, width, height);

...

cairo_ps_surface_dsc_comment (surface, "%%Title: My excellent document");

cairo_ps_surface_dsc_comment (surface, "%%Copyright: Copyright (C) 2006 Cairo Lover")

73

...

cairo_ps_surface_dsc_begin_setup (surface);

cairo_ps_surface_dsc_comment (surface, "%%IncludeFeature: *MediaColor White");

...

cairo_ps_surface_dsc_begin_page_setup (surface);

cairo_ps_surface_dsc_comment (surface, "%%IncludeFeature: *PageSize A3");

cairo_ps_surface_dsc_comment (surface, "%%IncludeFeature: *InputSlot LargeCapacity");

cairo_ps_surface_dsc_comment (surface, "%%IncludeFeature: *MediaType Glossy");

cairo_ps_surface_dsc_comment (surface, "%%IncludeFeature: *MediaColor Blue");

... draw to first page here ..

cairo_show_page (cr);

...

cairo_ps_surface_dsc_comment (surface, "%%IncludeFeature: *PageSize A5");

...

surface a PostScript <cairo-surface-t>

comment a comment string to be emitted into the PostScript output

Since 1.2

74

20 Recording Surfaces

Records all drawing operations

20.1 Overview

A recording surface is a surface that records all drawing operations at the highest level
of the surface backend interface, (that is, the level of paint, mask, stroke, fill, and
show text glyphs). The recording surface can then be "replayed" against any target
surface by using it as a source surface.

If you want to replay a surface so that the results in target will be identical to the results
that would have been obtained if the original operations applied to the recording surface
had instead been applied to the target surface, you can use code like this:

cairo_t *cr;

cr = cairo_create (target);

cairo_set_source_surface (cr, recording_surface, 0.0, 0.0);

cairo_paint (cr);

cairo_destroy (cr);

A recording surface is logically unbounded, i.e. it has no implicit constraint on the size
of the drawing surface. However, in practice this is rarely useful as you wish to replay
against a particular target surface with known bounds. For this case, it is more efficient to
specify the target extents to the recording surface upon creation.

The recording phase of the recording surface is careful to snapshot all necessary ob-
jects (paths, patterns, etc.), in order to achieve accurate replay. The efficiency of the
recording surface could be improved by improving the implementation of snapshot for the
various objects. For example, it would be nice to have a copy-on-write implementation for
cairo surface snapshot.

20.2 Usage

[Function]cairo-recording-surface-create (content <cairo-content-t>)
(extents <cairo-rectangle-t>) ⇒ (ret <cairo-surface-t >)

Creates a recording-surface which can be used to record all drawing operations at the
highest level (that is, the level of paint, mask, stroke, fill and show text glyphs). The
recording surface can then be "replayed" against any target surface by using it as a
source to drawing operations.

The recording phase of the recording surface is careful to snapshot all necessary
objects (paths, patterns, etc.), in order to achieve accurate replay.

content the content of the recording surface

extents the extents to record in pixels, can be ‘#f’ to record unbounded opera-
tions.

ret a pointer to the newly created surface. The caller owns the surface and
should call cairo-surface-destroy when done with it.

75

Since 1.10

[Function]cairo-recording-surface-ink-extents
(surface <cairo-surface-t>) ⇒ (x0 <double>) (y0 <double>)
(width <double>) (height <double>)

Measures the extents of the operations stored within the recording-surface. This is
useful to compute the required size of an image surface (or equivalent) into which to
replay the full sequence of drawing operations.

surface a <cairo-recording-surface-t>

x0 the x-coordinate of the top-left of the ink bounding box

y0 the y-coordinate of the top-left of the ink bounding box

width the width of the ink bounding box

height the height of the ink bounding box

Since 1.10

76

21 SVG Surfaces

Rendering SVG documents

21.1 Overview

The SVG surface is used to render cairo graphics to SVG files and is a multi-page vector
surface backend.

21.2 Usage

[Function]cairo-svg-surface-create (width-in-points <double>)
(height-in-points <double>) [(filename <char>)]
⇒ (ret <cairo-surface-t >)

Creates a SVG surface of the specified size in points to be written to filename. If
filename is not given, the output is sent to the current output port.

The SVG surface backend recognizes the following MIME types for the data attached
to a surface (see cairo-surface-set-mime-data) when it is used as a source pat-
tern for drawing on this surface: ‘CAIRO_MIME_TYPE_JPEG’, ‘CAIRO_MIME_TYPE_PNG’,
‘CAIRO_MIME_TYPE_URI’. If any of them is specified, the SVG backend emits a href
with the content of MIME data instead of a surface snapshot (PNG, Base64-encoded)
in the corresponding image tag.

The unofficial MIME type ‘CAIRO_MIME_TYPE_URI’ is examined first. If present, the
URI is emitted as is: assuring the correctness of URI is left to the client code.

If ‘CAIRO_MIME_TYPE_URI’ is not present, but ‘CAIRO_MIME_TYPE_JPEG’ or
‘CAIRO_MIME_TYPE_PNG’ is specified, the corresponding data is Base64-encoded and
emitted.

filename a filename for the SVG output (must be writable), ‘#f’ may be used to
specify no output. This will generate a SVG surface that may be queried
and used as a source, without generating a temporary file.

width-in-points
width of the surface, in points (1 point == 1/72.0 inch)

height-in-points
height of the surface, in points (1 point == 1/72.0 inch)

ret a pointer to the newly created surface. The caller owns the surface and
should call cairo-surface-destroy when done with it. This function al-
ways returns a valid pointer, but it will return a pointer to a "nil" surface
if an error such as out of memory occurs. You can use cairo-surface-

status to check for this.

Since 1.2

77

22 cairo matrix t

Generic matrix operations

22.1 Overview

<cairo-matrix-t> is used throughout cairo to convert between different coordinate spaces.
A <cairo-matrix-t> holds an affine transformation, such as a scale, rotation, shear, or a
combination of these. The transformation of a point (‘x’,‘y’) is given by:

x_new = xx * x + xy * y + x0;

y_new = yx * x + yy * y + y0;

The current transformation matrix of a <cairo-t>, represented as a <cairo-matrix-

t>, defines the transformation from user-space coordinates to device-space coordinates. See
cairo-get-matrix and cairo-set-matrix.

22.2 Usage

[Function]cairo-matrix-translate (matrix <cairo-matrix-t>)
(tx <double>) (ty <double>)

Applies a translation by tx, ty to the transformation in matrix. The effect of the
new transformation is to first translate the coordinates by tx and ty, then apply the
original transformation to the coordinates.

matrix a <cairo-matrix-t>

tx amount to translate in the X direction

ty amount to translate in the Y direction

[Function]cairo-matrix-invert (matrix <cairo-matrix-t>)
⇒ (ret <cairo-status-t>)

Changes matrix to be the inverse of its original value. Not all transformation matrices
have inverses; if the matrix collapses points together (it is degenerate), then it has no
inverse and this function will fail.

matrix a <cairo-matrix-t>

ret If matrix has an inverse, modifies matrix to be the inverse
matrix and returns ‘CAIRO_STATUS_SUCCESS’. Otherwise, returns
‘CAIRO_STATUS_INVALID_MATRIX’.

[Function]cairo-matrix-multiply (result <cairo-matrix-t>)
(a <cairo-matrix-t>) (b <cairo-matrix-t>)

Multiplies the affine transformations in a and b together and stores the result in
result. The effect of the resulting transformation is to first apply the transformation
in a to the coordinates and then apply the transformation in b to the coordinates.

It is allowable for result to be identical to either a or b.

result a <cairo-matrix-t> in which to store the result

78

a a <cairo-matrix-t>

b a <cairo-matrix-t>

[Function]cairo-matrix-transform-distance (matrix <cairo-matrix-t>)
⇒ (dx <double>) (dy <double>)

Transforms the distance vector (dx,dy) by matrix. This is similar to cairo-matrix-

transform-point except that the translation components of the transformation are
ignored. The calculation of the returned vector is as follows:

dx2 = dx1 * a + dy1 * c;

dy2 = dx1 * b + dy1 * d;

Affine transformations are position invariant, so the same vector always transforms
to the same vector. If (x1,y1) transforms to (x2,y2) then (x1+dx1,y1+dy1) will
transform to (x1+dx2,y1+dy2) for all values of x1 and x2.

matrix a <cairo-matrix-t>

dx X component of a distance vector. An in/out parameter

dy Y component of a distance vector. An in/out parameter

[Function]cairo-matrix-transform-point (matrix <cairo-matrix-t>)
⇒ (x <double>) (y <double>)

Transforms the point (x, y) by matrix.

matrix a <cairo-matrix-t>

x X position. An in/out parameter

y Y position. An in/out parameter

79

23 Error handling

Decoding cairo’s status

23.1 Overview

Cairo uses a single status type to represent all kinds of errors. A status value of
‘CAIRO_STATUS_SUCCESS’ represents no error and has an integer value of zero. All other
status values represent an error.

Cairo’s error handling is designed to be easy to use and safe. All major cairo ob-
jects retain an error status internally which can be queried anytime by the users using
cairo* status() calls. In the mean time, it is safe to call all cairo functions normally even
if the underlying object is in an error status. This means that no error handling code is
required before or after each individual cairo function call.

23.2 Usage

80

24 Version Information

Compile-time and run-time version checks.

24.1 Overview

Cairo has a three-part version number scheme. In this scheme, we use even vs. odd numbers
to distinguish fixed points in the software vs. in-progress development, (such as from git
instead of a tar file, or as a "snapshot" tar file as opposed to a "release" tar file).

_____ Major. Always 1, until we invent a new scheme.

/ ___ Minor. Even/Odd = Release/Snapshot (tar files) or Branch/Head (git)

| / _ Micro. Even/Odd = Tar-file/git

| | /

1.0.0

Here are a few examples of versions that one might see.

Releases

1.0.0 - A major release

1.0.2 - A subsequent maintenance release

1.2.0 - Another major release

Snapshots

1.1.2 - A snapshot (working toward the 1.2.0 release)

In-progress development (eg. from git)

1.0.1 - Development on a maintenance branch (toward 1.0.2 release)

1.1.1 - Development on head (toward 1.1.2 snapshot and 1.2.0 release)

24.2 Compatibility

The API/ABI compatibility guarantees for various versions are as follows. First, let’s
assume some cairo-using application code that is successfully using the API/ABI "from"

one version of cairo. Then let’s ask the question whether this same code can be moved "to"
the API/ABI of another version of cairo.

Moving from a release to any later version (release, snapshot, development) is always
guaranteed to provide compatibility.

Moving from a snapshot to any later version is not guaranteed to provide compatibility,
since snapshots may introduce new API that ends up being removed before the next release.

Moving from an in-development version (odd micro component) to any later version is
not guaranteed to provide compatibility. In fact, there’s not even a guarantee that the code
will even continue to work with the same in-development version number. This is because
these numbers don’t correspond to any fixed state of the software, but rather the many
states between snapshots and releases.

Chapter 24: Version Information 81

24.3 Examining the version

Cairo provides the ability to examine the version at either compile-time or run-time and
in both a human-readable form as well as an encoded form suitable for direct comparison.
Cairo also provides the macro cairo-version-encode to perform the encoding.

Compile-time

CAIRO_VERSION_STRING Human-readable

CAIRO_VERSION Encoded, suitable for comparison

Run-time

cairo_version_string() Human-readable

cairo_version() Encoded, suitable for comparison

For example, checking that the cairo version is greater than or equal to 1.0.0 could be
achieved at compile-time or run-time as follows:

##if CAIRO_VERSION >= CAIRO_VERSION_ENCODE(1, 0, 0)

printf ("Compiling with suitable cairo version: %s\n", %CAIRO_VERSION_STRING);

##endif

if (cairo_version() >= CAIRO_VERSION_ENCODE(1, 0, 0))

printf ("Running with suitable cairo version: %s\n", cairo_version_string ());

24.4 Usage

[Function]cairo-version ⇒ (ret <int>)
Returns the version of the cairo library encoded in a single integer as per
‘CAIRO_VERSION_ENCODE’. The encoding ensures that later versions compare greater
than earlier versions.

A run-time comparison to check that cairo’s version is greater than or equal to version
X.Y.Z could be performed as follows:

if (cairo_version() >= CAIRO_VERSION_ENCODE(X,Y,Z)) {...}

See also cairo-version-string as well as the compile-time equivalents
‘CAIRO_VERSION’ and ‘CAIRO_VERSION_STRING’.

ret the encoded version.

[Function]cairo-version-string ⇒ (ret <char >)
Returns the version of the cairo library as a human-readable string of the form
"X.Y.Z".

See also cairo-version as well as the compile-time equivalents
‘CAIRO_VERSION_STRING’ and ‘CAIRO_VERSION’.

ret a string containing the version.

82

25 Types

Generic data types

25.1 Overview

This section lists generic data types used in the cairo API.

25.2 Usage

83

Concept Index

(Index is nonexistent)

84

Function Index

cairo-append-path . 16
cairo-arc . 17
cairo-arc-negative . 18
cairo-clip . 9
cairo-clip-extents . 9
cairo-clip-preserve . 9
cairo-close-path . 17
cairo-copy-clip-rectangle-list 10
cairo-copy-page . 14
cairo-copy-path . 15
cairo-copy-path-flat . 15
cairo-create . 1
cairo-curve-to . 18
cairo-device-acquire . 57
cairo-device-finish . 57
cairo-device-flush . 57
cairo-device-get-type . 57
cairo-device-release . 58
cairo-device-to-user . 31
cairo-device-to-user-distance 32
cairo-fill . 10
cairo-fill-extents . 11
cairo-fill-preserve . 11
cairo-font-extents . 40
cairo-font-face-get-type . 43
cairo-font-options-copy . 50
cairo-font-options-create 50
cairo-font-options-get-antialias 51
cairo-font-options-get-hint-style 51
cairo-font-options-hash . 50
cairo-font-options-merge . 50
cairo-font-options-set-antialias 51
cairo-font-options-set-hint-metrics 51
cairo-font-options-set-hint-style 51
cairo-format-stride-for-width 65
cairo-get-antialias . 5
cairo-get-current-point . 16
cairo-get-dash-count . 6
cairo-get-fill-rule . 6
cairo-get-font-face . 38
cairo-get-font-matrix . 37
cairo-get-font-options . 38
cairo-get-group-target . 3
cairo-get-line-cap . 6
cairo-get-line-join . 7
cairo-get-line-width . 7
cairo-get-matrix . 31
cairo-get-miter-limit . 8
cairo-get-operator . 8
cairo-get-scaled-font . 39
cairo-get-source . 5
cairo-get-target . 1
cairo-get-tolerance . 9
cairo-glyph-extents . 41
cairo-glyph-path . 20

cairo-has-current-point . 16
cairo-identity-matrix . 31
cairo-image-surface-create 65
cairo-image-surface-create-from-png 69
cairo-image-surface-get-format 66
cairo-image-surface-get-height 66
cairo-image-surface-get-stride 66
cairo-image-surface-get-width 66
cairo-in-clip . 10
cairo-in-fill . 11
cairo-in-stroke . 13
cairo-line-to . 19
cairo-mask . 11
cairo-mask-surface . 12
cairo-matrix-invert . 77
cairo-matrix-multiply . 77
cairo-matrix-transform-distance 78
cairo-matrix-transform-point 78
cairo-matrix-translate . 77
cairo-move-to . 19
cairo-new-path . 16
cairo-new-sub-path . 17
cairo-paint . 12
cairo-paint-with-alpha . 12
cairo-path-extents . 21
cairo-pattern-add-color-stop-rgb 23
cairo-pattern-add-color-stop-rgba 23
cairo-pattern-create-for-surface 25
cairo-pattern-create-linear 26
cairo-pattern-create-radial 27
cairo-pattern-create-rgb . 24
cairo-pattern-create-rgba 25
cairo-pattern-get-color-stop-rgba 24
cairo-pattern-get-extend . 28
cairo-pattern-get-filter . 28
cairo-pattern-get-linear-points 26
cairo-pattern-get-matrix . 29
cairo-pattern-get-radial-circles 27
cairo-pattern-get-rgba . 25
cairo-pattern-get-surface 26
cairo-pattern-get-type . 29
cairo-pattern-set-extend . 28
cairo-pattern-set-filter . 28
cairo-pattern-set-matrix . 29
cairo-pdf-get-versions . 67
cairo-pdf-surface-create . 67
cairo-pdf-surface-set-size 67
cairo-pop-group . 2
cairo-pop-group-to-source . 3
cairo-ps-get-levels . 71
cairo-ps-surface-create . 70
cairo-ps-surface-dsc-comment 72
cairo-ps-surface-get-eps . 71
cairo-ps-surface-restrict-to-level 70
cairo-ps-surface-set-eps . 71

Function Index 85

cairo-ps-surface-set-size 71
cairo-push-group . 2
cairo-recording-surface-create 74
cairo-recording-surface-ink-extents 75
cairo-rectangle . 19
cairo-region-contains-point 34
cairo-region-contains-rectangle 34
cairo-region-copy . 33
cairo-region-create . 33
cairo-region-get-extents . 33
cairo-region-intersect . 34
cairo-region-is-empty . 33
cairo-region-subtract . 34
cairo-region-translate . 34
cairo-region-union . 35
cairo-region-xor . 35
cairo-rel-curve-to . 20
cairo-rel-line-to . 21
cairo-rel-move-to . 21
cairo-reset-clip . 10
cairo-restore . 1
cairo-rotate . 30
cairo-save . 1
cairo-scale . 30
cairo-scaled-font-create . 44
cairo-scaled-font-extents 44
cairo-scaled-font-get-ctm 49
cairo-scaled-font-get-font-face 48
cairo-scaled-font-get-font-matrix 48
cairo-scaled-font-get-font-options 48
cairo-scaled-font-get-type 49
cairo-scaled-font-glyph-extents 45
cairo-scaled-font-text-extents 44
cairo-scaled-font-text-to-glyphs 45
cairo-select-font-face . 36
cairo-set-antialias . 5
cairo-set-dash . 5
cairo-set-fill-rule . 6
cairo-set-font-face . 38
cairo-set-font-matrix . 37
cairo-set-font-options . 37
cairo-set-font-size . 37
cairo-set-line-cap . 6
cairo-set-line-join . 7
cairo-set-line-width . 7
cairo-set-matrix . 31
cairo-set-miter-limit . 7

cairo-set-operator . 8
cairo-set-scaled-font . 38
cairo-set-source . 4
cairo-set-source-rgb . 3
cairo-set-source-rgba . 4
cairo-set-source-surface . 4
cairo-set-tolerance . 8
cairo-show-glyphs . 39
cairo-show-page . 14
cairo-show-text . 39
cairo-show-text-glyphs . 40
cairo-stroke . 12
cairo-stroke-extents . 13
cairo-stroke-preserve . 13
cairo-surface-copy-page . 63
cairo-surface-create-for-rectangle 60
cairo-surface-create-similar 59
cairo-surface-finish . 60
cairo-surface-flush . 61
cairo-surface-get-content 61
cairo-surface-get-device . 61
cairo-surface-get-device-offset 62
cairo-surface-get-font-options 61
cairo-surface-get-mime-data 63
cairo-surface-get-type . 62
cairo-surface-has-show-text-glyphs 63
cairo-surface-mark-dirty . 61
cairo-surface-mark-dirty-rectangle 62
cairo-surface-set-device-offset 62
cairo-surface-set-mime-data 64
cairo-surface-show-page . 63
cairo-surface-write-to-png 69
cairo-svg-surface-create . 76
cairo-text-extents . 40
cairo-text-path . 20
cairo-toy-font-face-create 41
cairo-toy-font-face-get-family 42
cairo-toy-font-face-get-slant 42
cairo-toy-font-face-get-weight 42
cairo-transform . 30
cairo-translate . 30
cairo-user-font-face-create 55
cairo-user-font-face-set-init-func 55
cairo-user-to-device . 31
cairo-user-to-device-distance 31
cairo-version . 81
cairo-version-string . 81

